期刊文献+

基于预滤波和子块排序的稀疏域SAR图像去噪

Prefiltering and Patch Ordering-based SAR Image Despeckling via Sparse Domain Filtering
下载PDF
导出
摘要 为了抑制合成孔径雷达(SAR)图像中存在的相干斑噪声,从而得到高质量的SAR图像,文中通过在子块排序之前引入预滤波处理提出了一种新的SAR图像噪声抑制方法。首先将SAR图像作对数变换;然后在子块排序前进行预滤波处理去除不相似的子块,从而可以避免不必要的计算,最重要的是能够抑制人为引入的纹理;最后,通过稀疏表示对排序后的子块进行滤波,对滤波后的子块进行逆排序、子图像平均和指数变换最终得到去噪后的SAR图像。仿真图像和真实SAR图像的实验结果表明文中提出的去噪方法的去噪效果评价指标峰值信噪比(PSNR)、结构相似度(SSIM)和等效视数(ENL)都达到了现有优良去噪算法的水平,去噪后的图像看不到明显的斑点噪声,图像清晰且纹理保存较好,均匀区域平滑。该方法具有良好的相干斑抑制能力和细节保留能力。 In order to suppress speckle noise in synthetic aperture radar(SAR) image and obtain high quality SAR image, this paper proposes a novel method of SAR image denoising by prefiltering the patches before patch ordering. This method firstly performs logarithmic transformation on the SAR image. Then, some dissimilar patches are removed by prefilter before patch ordering. It can avoid unnecessary calculations, suppressing the introduced artificial texture. Finally, ordered patches are filtered by sparse representation. The final denoised image can be reconstructed from the filtered patches via inverse permutation, subimage averaging and exponential transformation. The experimental results of simulated images and real SAR images show that the denoising method proposed in this paper reaches the level of the existing good denoising algorithms in terms of peak signal to noise ratio(PSNR)、structural similarity index(SSIM) and equivalent numbers of looks(ENL). The denoised image has reached the level of the existing good algorithms in visual effect. This method can well maintain the image details and at the same time suppress speckle noise in SAR image.
作者 李仁昌 张向阳 邓召嵘 高为民 LI Renchang;ZHANG Xiangyang;DENG Zhaorong;GAO Weimin(School of Information Engineering,Nanchang Hangkong University,Nanchang 330063,China)
出处 《现代雷达》 CSCD 北大核心 2021年第10期68-77,共10页 Modern Radar
基金 国家自然科学基金资助项目(61761031,61861033) 国家航空科学基金资助项目(20172056002,20142056005) 南昌航空大学教学改革资助项目(KCPY1779,JY1625)。
关键词 子块排序 预滤波 SAR图像去噪 稀疏表示 patch ordering prefiltering SAR image despeckling sparse representation
  • 相关文献

参考文献3

二级参考文献31

  • 1梁栋,李瑶,沈敏,高清维,鲍文霞.一种基于小波-Contourlet变换的多聚焦图像融合算法[J].电子学报,2007,35(2):320-322. 被引量:30
  • 2吕雁.SAR图像相干斑噪声滤除中局部窗的选择[J].现代雷达,2007,29(6):40-42. 被引量:2
  • 3Goodman J W. Some fundamental properties of speckle [J]. Journal Optical Society America, 1976, 6 ( 11 ) : 1145-1150.
  • 4Liu Z X, Hu S H, Xiao Y, Qu G Z, Kim K S, SAR im- age target extraction based on 2-D leapfrog filtering, Pro- ceedings of 2010 IEEE 10th International Conference on Signal Processing, (ICSP2010) , 2010, pp. 1943-1946.
  • 5肖扬,张颖康,一种基于二维混合变换的SAR回波信号去噪预处理方法,中国国家知识产权局,申请号:2009100083345.7,申请13期:2009-05-04.
  • 6Do M N. Directional multiresolution image representation [ D]. PhD thesis, EPFL, Lausanne, Switzerland, 2001.
  • 7Do M N, Vetterli M. Contourlets: A directional muhireso- lution image representation[ C]. Proc of IEEE International Conference on Image Processing. Rochester, NY: 2002. 357 -360.
  • 8J W Goodman. Some fundamental properties of speckle [ J ]. J. Opt. Soc. Am, 1976,66 ( 11 ) : 1145-1150.
  • 9Cunha A L, Zhou J P, and Do M N. The nonsubsampled Contourlet transform: Theory, design and application. IEEE Trans. on Image Processing, 2006, 15 (10) : 3059- 3101.
  • 10Eslami R, Radha H. Wavelet based Contourlet Transform and it's Application to Image Coding[ C ]. Singapore: IEEE International Conference on Image Processing, 2004:3189- 3192.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部