期刊文献+

滚动轴承多分类故障诊断技术研究 被引量:3

Research on Multi-Classification Fault Diagnosis Technology of Rolling Bearing
下载PDF
导出
摘要 滚动轴承是在机械设备中非常重要的关键部件之一,对其开展故障诊断技术研究具有重要意义。本文分别采用4种模型对滚动轴承进行了多分类故障诊断技术研究,通过对比实验数据,卷积神经网络分类速度快、精度高,展现出优异的分类能力。 Rolling bearing is very important in mechanical equipment,one of the key components of the research on fault diagnosis technology is of great significance This paper USES four kinds of models of classification was carried out in rolling bearing fault diagnosis technology research,by comparing the experimental data,fast convolution neural network classification High precision,excellent ability of classification.
作者 刘琦 Liu Qi(PLA 92493 Troop 60 Unit,Liaoning,Huludao,125000,China)
机构地区 [
出处 《仪器仪表用户》 2021年第11期28-33,共6页 Instrumentation
关键词 滚动轴承 多分类模型 故障诊断 rolling bearing multiple classification model fault diagnosis
  • 相关文献

参考文献1

二级参考文献16

  • 1GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 2HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 3KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 4BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 5WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 6BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 7ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.
  • 9JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.
  • 10LEI Yaguo, ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1535-1547.

共引文献336

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部