摘要
滚动轴承是在机械设备中非常重要的关键部件之一,对其开展故障诊断技术研究具有重要意义。本文分别采用4种模型对滚动轴承进行了多分类故障诊断技术研究,通过对比实验数据,卷积神经网络分类速度快、精度高,展现出优异的分类能力。
Rolling bearing is very important in mechanical equipment,one of the key components of the research on fault diagnosis technology is of great significance This paper USES four kinds of models of classification was carried out in rolling bearing fault diagnosis technology research,by comparing the experimental data,fast convolution neural network classification High precision,excellent ability of classification.
作者
刘琦
Liu Qi(PLA 92493 Troop 60 Unit,Liaoning,Huludao,125000,China)
出处
《仪器仪表用户》
2021年第11期28-33,共6页
Instrumentation
关键词
滚动轴承
多分类模型
故障诊断
rolling bearing
multiple classification model
fault diagnosis