期刊文献+

藜麦ASR基因家族的生物信息学分析

Bioinformatics Analysis of ASR Gene Family in Quinoa(Chenopodium quinoa)
原文传递
导出
摘要 ASR基因(脱落酸,胁迫,成熟诱导基因)普遍存在于种子植物中,多以基因家族的形式存在,作为糖、脱落酸(abscisic acid,ABA)和胁迫信号通路的共同成分,在植物生长发育、果实成熟和抵御胁迫等方面发挥着重要的作用。为了探究ASR基因家族在藜麦中发挥的功能,本研究在藜麦全基因组数据和蛋白质组数据中查找到19条ASR基因,其编码氨基酸数目在98~235 aa之间,分子量介于11015.73~24485.48 kD之间,等电点在5.04~9.96之间,除XP_(0)21735625.1之外,所有序列均含有2个外显子和1个内含子。另外,藜麦ASR蛋白均为亲水蛋白,其中有9个蛋白不稳定系数小于40,最低值为21.25,具有较高的亲水性和热稳定性。根据亚细胞定位,藜麦ASR蛋白中有4个位于线粒体,其余位于细胞核,推测藜麦ASR蛋白在抵御胁迫和果实成熟上发挥重要的功能。通过构建保守序列标签,藜麦ASR蛋白有两个高度保守区域,一个为靠近N端的富含组氨酸区,一个为靠近C端富含丙氨酸的核定位信号区。通过进化分析,将藜麦ASR蛋白分为Group A~D四组,每组蛋白的二级结构和三级结构相似,保守基序相同,推测发挥相同的生理功能,而组与组之间结构差异较大,推测执行不同的生理功能。本研究通过理化性质分析、进化分析、结构预测等对藜麦ASR基因家族的性质、结构、功能进行了分析和预测,为后续对藜麦ASR基因家族功能的深入研究提供了一定的理论依据。 ASR genes(Abscisic acid,stress,mature-induced genes) widely exist in seed plants,mostly in the form of gene family.As a common component of sugar,abscisic acid(ABA) and stress signaling pathway,ASR genes play an important role in plant growth and development,resistance to stress and fruit ripening.In order to explore the function of ASR gene family in quinoa,19 ASR genes were found in the whole genome data and proteomic data of quinoa.Among the amino acids encoding them,we found that the length ranged from 98 aa to 235 aa,the molecular weight ranged from 11 015.73 kD to 24 485.48 k D,the isoelectric point ranged from 5.04 to 9.96.Except XP_(0)21735625.1,all sequences contained two exons and one intron.In addition,ASR proteins of quinoa were all hydrophilic proteins,and nine proteins had instability coefficients less than 40,the lowest value was 21.25,so they have high hydrophilicity and thermal stability.Subcellular localization analysis confirmed that four proteins were located in mitochondrion and the rest in the nucleus.It is speculated that ASR proteins of quinoa play an important role in resisting stress and fruit ripening.By constructing conserved sequence tags,ASR protein of quinoa had two highly conserved regions,one was histidine rich region near the N-terminal and the other was alanine rich nuclear localization signal region near the C-terminal.Through evolutionary analysis,ASR proteins of quinoa were divided into four groups,Group A~D.The secondary structure and tertiary structure of each group of proteins were similar,and the conserved motifs were the same,so it is speculated that they play the same physiological function,while the structure differences between groups were large,so it is speculated that they perform different physiological functions.In this study,the properties,structures and functions of ASR gene family in quinoa were analyzed and predicted through physical and chemical properties analysis,evolution analysis and structure prediction,which provides a theoretical basis for further research on the function of ASR gene family in quinoa.
作者 时兴伟 袁哲明 周江波 董玉梅 李兰芝 Shi Xingwei;Yuan Zheming;Zhou Jiangbo;Dong Yumei;Li Lanzhi(Hunan Engineering&Technology Research Center for Agricultural Big Data Analysis&Decision-making,Hunan Agricultural University,Changsha,410128;State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan,Yunnan Agricultural University,Kunming,650201;School of Life and Health Science,Kaili University,Kaili,556000)
出处 《分子植物育种》 CAS 北大核心 2021年第20期6629-6640,共12页 Molecular Plant Breeding
基金 杂交水稻国家重点实验室(武汉大学)开放课题基金(KF201912) 杂交水稻国家重点实验室(湖南杂交水稻研究中心)开放课题基金(2019KF05) 湖南省自然科学基金项目(2020JJ4039) 湖南农业大学“双一流”学科建设项目(SYL2019028) 贵州省教育厅自然科学基金(重点)项目(黔教合KY字[2015]381)共同资助。
关键词 藜麦(Chenopodium quinoa) ASR基因家族 生物信息分析 功能预测 Chenopodium quinoa ASR gene family Bioinformatics analysis Function prediction
  • 相关文献

参考文献4

二级参考文献30

  • 1YuXinHU YongHongWANG XinFangLIU JiaYangLI.Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development[J].Cell Research,2004,14(1):8-15. 被引量:56
  • 2Clouse S.D., Langford M., and McMorris T.C., 1996, A brassi nosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development, Plant Physiology, 111(3): 671-678.
  • 3Costa V., Angelini C., De Feis I., and Ciccodicola A., 2010, Uncovering the complexity of transcriptomes with RNA-seq,Journal of Biomedicine and Biotechnology, (10): 853-916.
  • 4He J.X., Gendron J.M., Sun Y., Gampala S.S., Gendron N., Sun C.Q., and Wang Z.Y., 2005, BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses, Science, 307(5715): 1634-1638.
  • 5He J.X., Gendron J.M., Yang Y., Li J., and Wang Z.Y., 2002, The GSK3-1ike kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis, Proceeding of the National Academy of Sciences of the United States of America, 99 (15): 10185-10190.
  • 6Li J., and Nam K.H., 2002, Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase, Science, 295 (5885): 1299-1301.
  • 7Li J., Nam K.H., Vafeados D., and Chory J., 2001, BIN2, a new brassinosteroid-insensitive locus in Arabidopsis, Plant Physiology, 127(1): 14-22.
  • 8Mandava N.B., 1988, Plant growth-promoting brassinosteroids, Annual Review of Plant Physiology and Plant Molecular Biology, 39:23-52.
  • 9Vert G., and Chory J., 2006, Downstream nuclear events in brassinosteroid signalling, Nature, 441 (7089): 96-100.
  • 10Vert G., Walcher C.L., Chory J., and Nemhauser J.L., 2008, Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2, Proceeding of the National Academy of Sciences of the United States of America, 105(28): 9829-9834.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部