期刊文献+

钙同位素在高温地质过程中的应用及前景 被引量:1

Application and prospects of calcium isotopes in high temperature processes
下载PDF
导出
摘要 制约高温过程中Ca同位素研究的因素主要有分析技术、储库端元和分馏机理。随着质谱的发展和双稀释剂的应用,分析技术已经能很好地满足高温过程同位素示踪的要求,但是目前对于储库端元的研究还比较薄弱,而分馏机理也存在较大争议。因此,完善不同储库端元的Ca同位素组成,厘清Ca同位素分馏机理势在必行。全硅酸岩地球作为最重要的Ca储库,前人研究表明,其Ca同位素组成在0.94‰~1.05‰之间变化。Ca—O化学键能的强弱是造成矿物间Ca同位素组成差异的主要因素,此外,温度和矿物组成差异也会引发Ca同位素分馏。热扩散和化学扩散都会引起Ca同位素分馏,但热扩散只发生在特殊的环境中。化学扩散受控于CaO化学势梯度,而化学势梯度受控于体系的成分、温度和压力。部分熔融和熔体提取过程中轻同位素趋向于富集在熔体相中。由于不同含钙矿物的Ca同位素组成存在差异,因此,在分离结晶过程中,矿物晶出顺序不同会引起Ca同位素分馏。变质作用过程中流体交代作用或碳酸盐岩沉淀都会造成Ca同位素分馏。K-Ca衰变体系使得Ca同位素既可以对古老的富钾岩石或矿物进行定年,也可以利用放射性成因Ca对源区和壳幔物质循环进行示踪。 The main factors restricting the development of Ca isotopes in high temperature processes are analytical techniques,Ca isotopic composition of the end members,and fractionation mechanisms.With the application of mass spectrometry and double spikes,the analytical method can meet the requirements of high temperature process tracing.However,research on the Ca isotopic composition of the end members is insufficient,and the fractionation mechanisms are controversial.Therefore,it is imperative to identify the Ca isotopic composition of the end members and to clarify the mechanisms of Ca isotope fractionation.As the most important end member,the Ca isotopic composition of bulk silicate Earth varies from 0.94‰to 1.05‰.The inter-mineral fractionation of Ca isotopes is primarily controlled by the strength of the Ca—O bond.In addition,the difference in temperature and mineral composition also leads to the fractionation of Ca isotopes.Both thermal and chemical diffusion can cause Ca isotope fractionation,but thermal diffusion only occurs in special environments.Chemical diffusion is controlled by the chemical potential of CaO,and the chemical potential is controlled by the composition of the system,temperature,and pressure.Light isotopes tend to be enriched in the melt during partial melting and melt extraction.The Ca isotopic heterogeneity of felsic minerals leads to Ca isotopic fractionation in the process of fractional crystallization.Both fluid metasomatism and carbonate precipitation during metamorphism lead to Ca isotopic fractionation.The K-Ca decay system makes it possible to date the ancient K-rich rocks or minerals.Radioactive Ca can also be used to trace the source region and crust-mantle material cycle.
作者 罗泽彬 凌明星 安亚军 刘芳 张兆峰 LUO Ze-bin;LING Ming-xing;AN Ya-jun;LIU Fang;ZHANG Zhao-feng(State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China;State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《地球化学》 CAS CSCD 北大核心 2021年第5期433-441,共9页 Geochimica
基金 东华理工大学核资源与环境国家重点实验室自主基金重点项目(2020Z03) 江西省“双千计划”创新领军人才(青年类)项目 东华理工大学高层次人才启动基金。
关键词 Ca同位素 高温地质作用 岩浆演化 变质作用 地质应用 calcium isotopes high temperature geological processes magmatic evolution metamorphism geological application
  • 相关文献

参考文献4

二级参考文献141

  • 1孙晨光,赵志丹,莫宣学,朱弟成,董国臣,周肃,董昕,谢国刚.青藏高原拉萨地块西部中新世赛利普超钾质岩石的地球化学与岩石成因[J].岩石学报,2007,23(11):2715-2726. 被引量:21
  • 2谢国刚,邹爱建,袁建芽,李晓勇,廖思平,唐峰林,黄传冠,陈振华,徐祖丰.邦多区幅、措麦区幅地质调查新成果及主要进展[J].地质通报,2004,23(5):498-505. 被引量:55
  • 3赵志丹,莫宣学,Sebastien NOMADE,Paul R RENNE,周肃,董国臣,王亮亮,朱弟成,廖忠礼.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J].岩石学报,2006,22(4):787-794. 被引量:87
  • 4陈建林,许继峰,康志强,王保弟.青藏高原西南部查孜地区中新世钾质火山岩地球化学及其成因[J].地球化学,2007,36(5):437-447. 被引量:22
  • 5Huang S C, Farkas J, Jacobsen S B. Stable calcium isotopic compositions of hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle[J]. Geochimica et Cosmochimica Acta, 2011, 75; 4987-4997.
  • 6Zhu H, Ling M, Zhang Z, et al. Calcium isotopic constraints on the genesis of the bayan obo deposit[C] // Proceedings of the AGU Fall Meeting Abstracts. 2013: 2625.
  • 7De La Rocha C L, DePaolo D J. Isotopic evidence for varia- tions in the marine calcium cycle over the Cenozoic[J]. Sci- ence, 2000, 289: 1176-1178.
  • 8Griffith E M, Paytan A, Caldeira K, et al. A dynamic ma- rine calcium cycle during the past 28 million years[J]. Sci- ence, 2008, 322: 1671-1674.
  • 9Farkag J, Bohm F, Wallmann K, et al. Calcium isotope re cord of Phanerozoic oceans: Implications for chemical evolu- tion of seawater and its causative mechanisms[J]. Geochimica et Cosmochimica Aeta, 2007, 71: 5117-5134.
  • 10Farkag J, Buhl D, Blenkinsop J, et al. Evolution of the oce- anic calcium cycle during the Late Mesozoic: Evidence from 344/4o Ca of marine skeletal carbonates[J]. Earth and Planeta- ry Science Letters, 2007, 253: 96-111.

共引文献22

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部