摘要
利用递归序列、同余、平方剩余、Pell方程的解的性质以及分类讨论等方法,证明了丢番图方程x^(3)+1=2247y^(2)仅有平凡整数解(x,y)=(-1,0).
The problem of integer solution of Diophantine equation x^(3)+1=2247y^(2) is studied in this paper.By means of recursive sequence,congruence,square residue,properties of solutions of Pell equation and classification discussion,it is proved that the Diophantine equation x^(3)+1=2247y^(2) has only trivial integer solution(x,y)=(-1,0).
作者
常青
高丽
CHANG Qing;GAO Li(College of Mathematics and Computer Science,Yan'an University,Yan'an 716000,China)
出处
《云南师范大学学报(自然科学版)》
2021年第6期18-20,共3页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
延安大学研究生教改计划资助项目(YDYJG2018022)
国家自然科学基金资助项目(61861044).
关键词
丢番图方程
PELL方程
同余方程
整数解
Diophantine equation
Pell equation
Congruence equation
Integer solutions