期刊文献+

基于多尺度交互结构卷积神经网络的SAR图像相干斑抑制方法 被引量:4

SAR image speckle suppression method based on muti-scale interactive structure convolutional neural network
下载PDF
导出
摘要 结合深度学习思想,提出了一种基于多尺度交互结构卷积神经网络(convolutional neural network,CNN)的合成孔径雷达(synthetic aperture radar,SAR)图像相干斑抑制方法。首先,通过不同尺寸的卷积核及跳跃连接构成多尺度交互特征提取模块以获得不同感受野的特征并加快网络收敛速度。然后,在多尺度交互特征提取模块之间利用简化的密集连接方式使网络能够充分利用浅层纹理特征。最后,采用残差学习策略得到抑制后的图像。实验结果表明,与已有方法相比,所提方法不仅使用较少的计算参数量,还能保证性能的提升。 Combined with the idea of deep learning,a speckle suppression method for synthetic aperture radar(SAR)images based on multi-scale interactive convolutional neural network(CNN)is proposed.Firstly,a multi-scale extraction module is constructed by convolution kernels and skip connection with different sizes to obtain the features of different receptive fields and speed up the convergence of the network.Then,the network can make the best of shallow texture features by using simplified dense connection between multi-scale interactive feature extraction modules.Finally,the suppressed image is obtained by residual learning strategy.The experimental results show that compared with the existing methods,the proposed method not only uses less calculation parameters,but also ensures the improvement of performance.
作者 申仕煜 叶晓东 王昊 陶诗飞 SHEN Shiyu;YE Xiaodong;WANG Hao;TAO Shifei(School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2021年第12期3526-3532,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61701240) 中央高校基本科研业务费专项资金(30918011317)资助课题。
关键词 深度学习 合成孔径雷达 相干斑抑制 卷积神经网络 残差学习策略 deep learning synthetic aperture radar(SAR) speckle suppression convolutional neural network(CNN) residual learning strategy
  • 相关文献

参考文献3

二级参考文献42

  • 1Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976,6(11) : 1145 - 1150.
  • 2Liu Z X, Hu S H, Xiao Y, et al. SAR image target extraction based on 2-D leapfrog filtering[C]// Proc. of the IEEE 10th In-ternational Conference on Signal Processing ,2010 : 1943 - 1946.
  • 3肖扬,张颖康.一种基于二维混合变换的SAR回波信号去噪预处理方法[P].2009100083345.7.[2009-05-04].
  • 4Do M N. Directional multiresolution image representation[D]. Switzerland: ecole Polytechnique Federale de Lausanne,2001.
  • 5Do M N, Vetterli M. Contourlets: a directional multiresolution image representation [C ] //Proc. of the IEEE International Conference on Image Processing, 2002: 357 - 360.
  • 6Eslami R, Radha H. Wavelet based contourlet transform and it's application to image eoding[C]// Proc. of the IEEE Interna- tional Conference on Image Processing, 2004:3189 - 3192.
  • 7Eslami R, Radha H. The contourlet transform for image de-noising using cycle spinning[C]//Proc, of the Asilomar Conference on Sig- nals, Systems, and Computers, 2003 : 1982 - 1986.
  • 8Kingsbury N. The dual tree complex wavelet transform: a new efficient tool for image restoration and enhancement[C]// Proc. of the Island of Rhodes Greece, 1998 : 319 - 322.
  • 9Kingsbury N. Image processing with complex wavelets [J]. Philosophical transactions: Mathematical Physical and Engi- neering Sciences, 1999,357(1760) :2543 - 2560.
  • 10Kingsbury N. Shift invariant properties of the dual-tree complex wavelet transform[C]//Proc, of the IEEE International Con- ference on Acoustics Speech and Signal, 1999:1221 - 1224.

共引文献17

同被引文献39

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部