期刊文献+

新型低温等离子体消毒装置研制及性能测试 被引量:2

Performance Test of a New Low Temperature Plasmagenerator for Disinfection
下载PDF
导出
摘要 目的研制一款新型低温等离子体消毒装置,以实现医院等室内空间环境的实时动态消毒。方法采用石英介质阻挡放电技术电离空气产生含多种带电粒子和活性氧组分的消毒因子,通过气流主动式释放消毒因子的方式实现空气环境净化和物体表面消毒。结果实验证明该装置能制造出不含氮氧化物的消毒因子,经检验其能有效消除室内空气、平板表面以及隔离服上的细菌病毒。结论该低温等离子体消毒装置具有较好的室内空气和表面的消毒能力,为阻断医院内环境中的病菌传播提供新的设备和技术手段。 Objective To develop a new type of low-temperature plasma generator to realize real-time dy⁃namic disinfection of indoor space environment.Methods Quartz Dielectric Barrier Discharge(DBD)technology was used to ionize air to generate various disinfection factors of charged particles and active oxygen components.Air environment purification and object surface disinfection were realized by actively releasing disinfection factors by air flow.The integrated intelligent induction,analysis and control system ensured the safe,effective and reliable opera⁃tion of the device.Results The device could produce disinfection factors without nitrogen oxides,and experimental tests proved that it could effectively eliminate bacteria and viruses in indoor air,flat surface and isolation clothing.Conclusion The low-temperature plasma disinfection device has better disinfection ability of indoor air and surface,and provides new equipment and technical means for indoor environment to block the spread of germs and virus.
作者 朱宗成 陈红 张伟 于旭东 ZHU Zongcheng;CHEN Hong;ZHANG Wei;YU Xudong(Naval Special Medical Center,Naval Medical University,Shanghai 200433;Aviation Medical Support Center of Naval Aviation University,Yantai 264000;Shanghai Zhizhong Environmental Protection and Energy Saving Technology Co.,Ltd.,Shanghai 201306)
出处 《解放军医院管理杂志》 2021年第10期944-946,共3页 Hospital Administration Journal of Chinese People's Liberation Army
基金 2018年度军内装备科研课题(hj2018a020372) 2018年上海市军民融合课题(JMRH-2018-1040)。
关键词 室内环境 空气消毒 低温等离子体 效果分析 indoor environment air disinfection low-temperature plasma effect analysis
  • 相关文献

参考文献3

二级参考文献40

  • 1石兴民,袁育康,孙岩洲,袁网,彭风玲,邱毓昌.Experimental Research of Inactivation Effect of Low-Temperature Plasma on Bacteria[J].Plasma Science and Technology,2006,8(5):569-572. 被引量:10
  • 2Roth J R. Industrial plasma engineering[M]. Bristol: Institute of Physics Publishing, 1995.
  • 3Kogelschatz U. Dielectric-barrier discharges: their history, dis charge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 41-46.
  • 4Kanazawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmospheric pressure[J]. J Phys D: Appl Phys, 1988, 21 (5) : 838-840.
  • 5Wang X X, Li C R, Lu M Z o et al. Study of atmospheric pressure glow discharge[J]. Plasma Sources Sci Technol, 2003, 12 (3): 358-361.
  • 6Raizer Y P. Gas discharge physics[M]. Berlin: Springer-Verlag, 1991.
  • 7Wang X X, Luo H Y, Liang Z, et al. Influence of wire mesh electrodes on dielectric barrier discharge[J]. Plasma Sources Sci Technol, 2006, 15(4): 845-848.
  • 8Golubovskii Y B, Maiorov V, Behnke J F. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. J Phys D: Appl Phys, 2002, 35(8):751-761.
  • 9Li M, Li C R, Wang X X, et al. Effect of surface charge trapping on dielectric barrier discharge[J]. Appl Phys Lett, 2008, 92(3) : 031503.
  • 10Li C R, Wang X X, Li M, et al. Dielectric barrier discharge using corona modified silicone rubber[J]. Europhys Lett, 2008, 84(2) : 25002.

共引文献228

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部