期刊文献+

多项式SVM算法在可穿戴设备监测学习过程的应用

Application of Polynomial SVM Algorithm in Wearable Device Monitoring Learning Process
下载PDF
导出
摘要 课堂活动中学生对教师课程设计元素的学习有效性评价多依赖于标准化的问卷来完成,然而问卷会对学生造成额外的压力造成评估结果失真。为了解决这个问题,使用腕戴式可穿戴设备,该设备可在学生的学习过程中对生理参数进行连续且无干扰的监测。通过对比随机森林算法、线性支持向量机(线型SVM)、径向SVM和多项式SVM算法,计算了与三个问卷调查因子(满意度、有用性和成绩)有关的均方根误差。结果表明,多项式SVM优于其他算法,其中有用性、成绩,满意度的最小错误率分别是13.8%、11.0%、11.8%。从可穿戴式设备获得的生理数据可以代表学生的学习过程。为机器学习算法与人体生理数据研究领域提供了新思路。 In classroom activities,students'ev aluation of the learning effectiveness of teachers'curriculum design el-ements mostly depends on standardized questionnaires,which will cause extra pressure on students and distort the evaluation results.In order to solve this problem,this study uses wrist wearable device,which can monitor physio-logical parameters continuously and without interference during the learning process of students.By comparing the random forest algorithm,linear support vector machine(linear SVM),mdial SVM and polynomial SVM,the root mean squae errors related to the three questionnaire factors(satisfaction,usefulness and performance)are calcu-lated.The results show that polynomial SVM is superior to other algrithms,in which the minimum error rates of usefulness,achievement and satisfaction are 13.8%,11.0%and 11.8%,respectively.The physiological data obtained from wearable devices can represent the learning process of students.It povides a new idea for the m-search of machine learning algorithm and human phy siological data.
作者 刘峥 申红 徐小勇 Liu Zheng;Shen Hong;Xu Xiaoyong(Xi'an Railway Vvoeational and Technieal Istitute,xi'an,Shaanxi 710014,China)
出处 《西安轨道交通职业教育研究》 2021年第3期31-35,共5页 Xi'an Rail Transit Vocational Education Research
基金 陕西省职业技术教育学会课题项目(No.SZJYB19-312)。
关键词 可穿戴设备 学习过程 机器学习 随机森林 支持向量机 Wearable Device Learning Process Machine Learning Random Forest Support Vector Machine
  • 相关文献

参考文献7

二级参考文献37

  • 1吴中江.关于电视节目图像质量的GSR研究[J].电化教育研究,1993,14(1):35-40. 被引量:1
  • 2Memoto相机[OL].<http://baike.baidu.corn/view/9500949.htm?fr=aladdin.>.
  • 3Vessyl-智能水杯中的战斗机[0L].<http://www.36kr.com/p/212827.html.>.
  • 4量化自我,一场二十年前无法想象的运动[OL].<http://www.36kr.com/p/204479.html.>.
  • 5RAWI M, AL-ANBUKY A. Passive house sensor networks: human centric thermal comfort concept[ C]// Proceedings of the 2009 5th International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Piscataway: IEEE, 2009:255-260.
  • 6MALHI K, MUKHOPADHYAY S C, SCHNEPPER J, et al. A Zig- bee-based wearable physiological parameters monitoring system[ J]. Sensors Journal, 2012, 12(3) : 423 -430.
  • 7ABE H, CHEN W, TOGAWA T, et ol. Development of a mobile phone based beat-by-beat sphygraomanometer[ C]// Proceedings of 6th Irtter- national Special Topic Conference on Information Technology Applica- tion in Biomedicine. Piscataway: IEEE, 2007:285 -287.
  • 8SUGIMOTO C, KOHNO R. Development of wireless sensing system monitoring physiological information for healthcare in daily life [ C]// Proceedings of the 2011 Fifth International Conference on Sensing Technology. Piscataway: IEEE, 2011 : 488 -493.
  • 9RAN P, SUN M, ZOU Y. ZigBee routing selection strategy based on data services and energy-balanced ZigBee routing [ C ]// APSCC'06: Proceedings of the 2006 IEEE Asia-Pacific Conference on Services Computing. Piscataway : IEEE, 2006:400 - 404.
  • 10XIAO H, GONG Y, OGAI H, et al. A data collection system in wireless network integrated WSN and ZIGBEE for bridge health diagnosis [ C ]//Proceedings of the 2011 SICE Annual Conference. Piscataway : IEEE, 2011 : 2024 - 2028.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部