期刊文献+

改进的YOLOv3目标检测算法 被引量:5

Improved YOLOv3 object detection algorithm
下载PDF
导出
摘要 针对YOLOv3目标检测算法存在网络参数量大、检测精度不够高的问题,首先,使用一种轻量化YOLOv3特征提取网络的方法,降低特征提取网络部分的参数量;其次,提出一种多级特征融合网络结构,提高YOLOv3算法特征层的检测效果;最后,采用一种软化的非极大值抑制(soft non-maximun suppression,Soft-NMS)算法,在检测阶段有效避免重叠目标下的漏检。结果表明,相比于YOLOv3算法,改进YOLOv3算法的参数量降低了46%,模型大小约为原模型的50%,在PASCAL VOC 2007数据集上的平均精度均值(mean average precision,mAP)提升了3.5%。 To overcome the defects of YOLOv3 algorithm’s large amount of network parameters and low detection accuracy,firstly,a light-weight YOLOv3 feature extraction network method was used to reduce the amount of parameters in the feature extraction network part.Secondly,a multi-level feature fusion network structure was proposed to improve the detection effect of the YOLOv3.Finally,a soft non-maximun suppression(Soft-NMS)algorithm was used in the detection stage to effectively avoid missed detections.Compared with the traditional YOLOv3 object detection algorithm,the experimental results of the improved YOLOv3 algorithm show that the amount of parameters are reduced by 46%and the model size is about 50%of the original model,with the mean average precision(mAP)on the PASCAL VOC 2007 data set increased by 3.5%.
作者 曹春键 臧强 王泽嘉 屠壮 CAO Chunjian;ZANG Qiang;WANG Zejia;TU Zhuang(School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044, China)
出处 《中国科技论文》 CAS 北大核心 2021年第11期1195-1201,共7页 China Sciencepaper
基金 国家自然科学基金资助项目(61973170,51575283) 国家重点研发计划项目(2017YFD0701201-02) 南京信息工程大学大学生创新创业训练计划项目(201910300308,202010300110Y)。
关键词 目标检测 YOLOv3算法 特征融合 非极大值抑制 平均精度均值 object detection YOLOv3 algorithm feature fusion non-maximun suppression(NMS) mean average precision(mAP)
  • 相关文献

参考文献5

二级参考文献45

  • 1潘锋,王宣银.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报(A辑),2005,10(2):181-186. 被引量:16
  • 2胡建华,徐健健.交通监控系统中车辆和行人的检测与识别[J].电子测量技术,2007,30(1):16-17. 被引量:13
  • 3Viola P, Jones M J. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2001. 511-518
  • 4Leibe B, Schiele B. Analyzing appearance and contour based methods for object categorization. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Wisconsin, USA: IEEE, 2003. 409-415
  • 5Zhang W, Yu B, Zelinsky G J, Samaras D. Object class recognition using multiple layer boosting with heterogeneous features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 323-330
  • 6Shotton J, Blake A, Cipolla R. Contour-based learning for object detection. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 503-510
  • 7Opelt A, Pinz A, Zisserman A. A boundary-fragment-model for object detection. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 575-588
  • 8Opelt A, Pinz A, Zisserman A. Fusing shape and appearance information for object category detection. In: Proceedings of the 17th British Machine Vision Conference. Edinburgh, UK: Microsoft Lisa, 2006. 117-126
  • 9Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4): 349-361
  • 10Mikolajczyk K, Schmid C, Zisserman A. Human detection based on a probabilistic assembly of robust part detectors. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech Republic: Springer, 2004. 69-82

共引文献121

同被引文献26

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部