期刊文献+

一种基于动态步长的AAPF-RRT*移动机器人路径规划新算法 被引量:9

A novel path planning method of mobile robot based on AAPF-RRT*with dynamic step
下载PDF
导出
摘要 针对改进快速搜索随机树(rapidly-exploring random tree,RRT*)算法中节点盲目扩展和收敛速率慢的问题,提出了一种基于RRT*的路径规划新算法。首先,通过改进相对距离势场法,提出了自适应人工势场(adaptive artificial potential field,AAPF)法,既克服了相对距离势场法中引力与斥力过大的问题,又解决了目标点不可达的问题。然后,将RRT*算法与AAPF法相结合,并将固定步长改为动态步长,从而既克服了RRT*算法中节点盲目扩展的问题,又显著提高了移动机器人路径规划效率和避障灵活性,同时兼顾路径平滑性。最后,基于MATLAB进行仿真,验证了所提算法的有效性和实用性。 Aiming at the problem of blind exploring and low rate of convergence in improved rapidly-exploring random tree(RRT*)algorithm,a novel path planning method for mobile robot was proposed by improving RRT*algorithm.Firstly,adaptive artificial potential field(AAPF)algorithm was proposed on the basis of improved potential field with relative distance.AAPF algorithm not only overcomes the defections of excessive attractive and repulsive forces,but also solves the problem of goals non-reachable with obstacles nearby.Secondly,in order to avoid the blind explorations of nodes,RRT*algorithm was combined with AAPF algorithm,and fixed step of the combined algorithm was changed into dynamic step.The new path planning method not only avoids the blind explorations of nodes,but also effectively improves the efficiency of path planning and flexibility of obstacle avoidance.Meanwhile,smoothness of planned path could be guaranteed.Finally,a simulation based on MATLAB was conducted,and the utility of the method proposed was checked by the results in this paper.
作者 臧强 张国林 靳雨桐 张凯 ZANG Qiang;ZHANG Guolin;JIN Yutong;ZHANG Kai(School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044, China)
出处 《中国科技论文》 CAS 北大核心 2021年第11期1227-1233,1270,共8页 China Sciencepaper
基金 国家自然科学基金资助项目(61973170,51575283) 国家重点研发计划项目(2017YFD0701201-02)。
关键词 机器人控制 路径规划 快速扩展随机树 自适应人工势场 动态步长 robot control path planning rapidly-exploring random tree(RRT*) adaptive artificial potential field(AAPF) dynamic step
  • 相关文献

参考文献5

二级参考文献39

  • 1吴刚,谭彧,郑永军,王书茂.基于机器视觉的谷物联合收获机行走目标直线检测[J].农业机械学报,2012,43(S1):266-270. 被引量:10
  • 2蔡自兴.智能控制及移动机器人研究进展[J].中南大学学报(自然科学版),2005,36(5):721-726. 被引量:31
  • 3况菲,王耀南.基于混合人工势场-遗传算法的移动机器人路径规划仿真研究[J].系统仿真学报,2006,18(3):774-777. 被引量:43
  • 4JoséA,,Marcelo T,Gerardo G.Evolutionary reactive behavior for mobile robots navigation. 2004IEEE Conference on Cybernetics and Intelligent Systems . 2004
  • 5Pang K K,Prahlad V,Lee T H,et al.Evolution of control systems for mobile robots. Proceedings of the2002Congress on Evolutionary Computation . 2002
  • 6Lounis A,Nadine L.Hybrid behavioral control architecture for the cooperation of minimalist mobile robots. IEEE Robotics and Automation Society.Proceedings-2004IEEE International Conference on Robotics and Automation . 2004
  • 7Low K H,Leow W K,Ang J H.A hybrid mobile robot architecture with integrated planning and control. Proceedings of the International Conference on Autonomous Agents . 2002
  • 8Hong S,Sanghoon L,Bong O K,et al.Design and implementation of a behavior-based control and learning architecture for mobile robot. 2003IEEE International Conference on Robotics and Automation . 2003
  • 9Nelson,A.L,Grant,E,Galeotti,J.M.etal.Maze exploration behaviors using an integrated evolutionary robotics environment. Robotics and Autonomous Systems . 2004
  • 10Nelson A L,Grant E,Barlow G et al.Evolution of complex autonomous robot behaviors using competitive fitness. Proceedings of the IEEE International Conference on Integration of Knowledge Intensive Multi-Agent Systems . 2003

共引文献148

同被引文献133

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部