期刊文献+

凸体的覆盖与照亮

Covering and illumination of convex bodies
下载PDF
导出
摘要 关于凸体覆盖的Hadwiger猜想是源于凸和离散几何的悬而未决的公开问题。在综述有关该猜想的经典结果之后,介绍用以研究这一猜想的两种不同方案及近期的相关结果。第一种是宗传明提出的数量化方案,它的可行性等价于Hadwiger猜想的正确性。另一方案基于对高维中心对称凸体的覆盖问题的研究,其可行性取决于P.Soltan的一个问题是否有肯定的回答。 After a survey of classical results on Hadwiger’s covering conjecture,a long-standing open problem from convex and discrete geometry,we introduced two approaches to attack this conjecture and their related results.The first approach is Chuanming Zong’s quantitative program,which is theoretically feasible if Hadwiger’s covering conjecture is true.The other tries to confirm this conjecture by attacking it for high-dimensional centrally symmetric convex bodies,whose feasibility depends on the affirmative answer to a problem posedby P.Soltan.
作者 吴森林 何婵 WU Senlin;HE Chan(School of Science,North University of China,Taiyuan 030051,China)
机构地区 中北大学理学院
出处 《苏州科技大学学报(自然科学版)》 2021年第4期1-9,共9页 Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(12071444) 山西省自然科学基金资助项目(201901D111141)
关键词 凸体 覆盖泛函 Hadwiger猜想 Soltan问题 convex body covering functional Hadwiger’s covering conjecture Soltan’s problem
  • 相关文献

参考文献2

二级参考文献37

  • 1Károly Bezdek.The illumination conjecture and its extensions[J]. Periodica Mathematica Hungarica . 2006 (1-2)
  • 2V. Boltyanski.Solution of the Illumination Problem for Bodies with md M = 2[J]. Discrete & Computational Geometry . 2001 (4)
  • 3H. Martini,V. Soltan.Combinatorial problems on the illumination of convex bodies[J]. Aequationes Mathematicae . 1999 (2-3)
  • 4Ioannis Papadoperakis.An Estimate for the Problem of Illumination of the Boundary of a Convex Body in E3[J]. Geometriae Dedicata . 1999 (3)
  • 5István Talata.Solution of Hadwiger-Levi’s Covering Problem for Duals of Cyclic 2k-Polytopes[J]. Geometriae Dedicata . 1999 (1)
  • 6Károly Bezdek,Tibor Bisztriczky.A Proof of Hadwiger’s Covering Conjecture for Dual Cyclic Polytopes[J]. Geometriae Dedicata . 1997 (1)
  • 7Chuanming Zong.Some remarks concerning kissing numbers, blocking numbers and covering numbers[J]. Periodica Mathematica Hungarica . 1995 (3)
  • 8Marek Lassak.Covering a plane convex body by four homothetical copies with the smallest positive ratio[J]. Geometriae Dedicata . 1986 (2)
  • 9Kurt Schütte.überdeckungen der Kugel mit h?chstens acht Kreisen[J]. Mathematische Annalen . 1955 (1)
  • 10F. W. Levi.Ein geometrisches überdeckungsproblem[J]. Archiv der Mathematik . 1954 (4-6)

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部