摘要
研究了一类高阶线性非齐次微分方程f_((n))+A_(n-1) f^((n-1))+…+A_(0)f=F的解与自由项F(z)的Borel方向之间的关系,其中A_(0),A_(1),…,A_(n-1)为有限级整函数;并且给出了一类高阶线性齐次方程f^((n))+A_(n-1) f^((n-1))+…+A_(0) f=0的解的Borel方向集合的测度的下界,其中A_(0),A_(1),…,A_(n-1)为整函数且μ(A_(0))>max{ρ(A_(1)),ρ(A_(2)),…,ρ(A_(n))}。
In this paper,we explored the relationship between the solutions of a class of higher order linear non-homogeneous differential equations f_((n))+A_(n-1) f^((n-1))+…+A_(0)f=F and the Borel direction of the free term F(z),where A0,A1,…,An-1 are entire functions of finite order.Besides,we gave the measure lower bound of the Borel direction set of the solutions for a class of higher order linear homogeneous equations f^((n))+A_(n-1) f^((n-1))+…+A_(0) f=0,where A_(0),A_(1),…,A_(n-1)are entire function and μ(A_(0))>max{ρ(A_(1)),ρ(A_(2)),…,ρ(A_(n))}。.
作者
王正
黄志刚
WANG Zheng;HUANG Zhigang(School of Mathematical Sciences,SUST,Suzhou 215009,China)
出处
《苏州科技大学学报(自然科学版)》
2021年第4期30-34,共5页
Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(11971344)
江苏省研究生科研与实践创新计划项目(KYCX20_2747)。
关键词
微分方程
角域
整函数
BOREL方向
differential equation
angular domain
entire function
Borel direction