期刊文献+

关于高阶线性复微分方程整函数解的Borel方向

Borel direction of entire function solutions of higher order linear complex differential equation
下载PDF
导出
摘要 研究了一类高阶线性非齐次微分方程f_((n))+A_(n-1) f^((n-1))+…+A_(0)f=F的解与自由项F(z)的Borel方向之间的关系,其中A_(0),A_(1),…,A_(n-1)为有限级整函数;并且给出了一类高阶线性齐次方程f^((n))+A_(n-1) f^((n-1))+…+A_(0) f=0的解的Borel方向集合的测度的下界,其中A_(0),A_(1),…,A_(n-1)为整函数且μ(A_(0))>max{ρ(A_(1)),ρ(A_(2)),…,ρ(A_(n))}。 In this paper,we explored the relationship between the solutions of a class of higher order linear non-homogeneous differential equations f_((n))+A_(n-1) f^((n-1))+…+A_(0)f=F and the Borel direction of the free term F(z),where A0,A1,…,An-1 are entire functions of finite order.Besides,we gave the measure lower bound of the Borel direction set of the solutions for a class of higher order linear homogeneous equations f^((n))+A_(n-1) f^((n-1))+…+A_(0) f=0,where A_(0),A_(1),…,A_(n-1)are entire function and μ(A_(0))>max{ρ(A_(1)),ρ(A_(2)),…,ρ(A_(n))}。.
作者 王正 黄志刚 WANG Zheng;HUANG Zhigang(School of Mathematical Sciences,SUST,Suzhou 215009,China)
出处 《苏州科技大学学报(自然科学版)》 2021年第4期30-34,共5页 Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11971344) 江苏省研究生科研与实践创新计划项目(KYCX20_2747)。
关键词 微分方程 角域 整函数 BOREL方向 differential equation angular domain entire function Borel direction
  • 相关文献

参考文献3

二级参考文献16

  • 1WU Shengjian.Angular distribution in complex oscillation theory[J].Science China Mathematics,2005,48(1):107-114. 被引量:9
  • 2Hayman W. Meromorphic function [ M ]. Oxford : Claren- don Press, 1964.
  • 3Wu Shengjian. On the location of zeros of solution off" + Af= 0 where A (z) is entire [ J ]. Math Scand, 1994,74 (2) :293-312.
  • 4Laine I, Wu Shengjian. Removable sets in the oscillation theroy of complex differential equations [ J ]. Math Anal Appl, 1997,214 ( 1 ) : 233-244.
  • 5Gundersen G G. Finite order solutions of second order lin- ear differential equations [ J ]. Trans Amer Math Soc, 1988,305( 1 ) :415-429.
  • 6Hellenstein S, Miles J, Rossi J. On the growth of solutions off" +gf +h f=0 [J]. Trans Amer Math Soc,1991,324 (2) :693-706.
  • 7Wu Shengjian. On the growth of solution of second order linear differential equation in an angle [ J ]. Complex Vari- ables, Theory and Application, 1994,24 (3/4) :241-248.
  • 8Valiron G. Recherches sur le theoreme de M. Borel dans la theorie des fonctions meromorphes [ J ]. Aca Math, 1929, 52( 1 ) :67-92.
  • 9Goldberg A A, Ostrovskii I V. The distribution of values of meromorphic functions [ M ]. Moscow : Izdat Nauk, 1970.
  • 10Nevannlinna R H. Uber die eigenschaften meromorpher funktionen in einem winkelraum [ J ]. Acta Soc Sci Fenn, 1925,50(12) :1-45.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部