期刊文献+

贝莱斯芽孢杆菌YB-145对小麦纹枯病的防治效果及促生作用 被引量:20

Biological Control of Sharp Eyespot and Growth Promotion in Wheat by Bacillus velezensis YB‑145
下载PDF
导出
摘要 为探寻对小麦具有促生作用并高效防治小麦纹枯病的优良菌株,首先采用平板对峙法测定菌株YB-145对禾谷丝核菌、西瓜枯萎病菌、小麦根腐病菌、芹菜早疫病菌、花生果腐病菌、禾谷镰刀菌6种植物病原菌菌丝生长的抑制作用,然后根据其形态特征、生理生化特征和16S rRNA基因测序对该菌株进行鉴定;之后分别采用皿内水培法、盆栽法和田间试验测定菌株YB-145对小麦纹枯病的生物防治效果及对小麦的促生作用。结果表明,菌株YB-145为贝莱斯芽孢杆菌(Bacillus velezensis),能够抑制上述6种病原菌菌丝的生长,其中对禾谷丝核菌菌丝生长的抑制作用最明显。该菌株还能够产生IAA(吲哚乙酸)和铁离子载体,具有分泌蛋白酶和β-1,3-葡聚糖酶活性。1×10^(7)、1×10^(8) cfu/mL YB-145菌悬液浸种能显著提高小麦根鲜质量、地上部鲜质量和地上部高度,并且1×10^(8) cfu/mL YB-145菌悬液浸种对小麦幼苗纹枯病的防效达到73.31%。田间试验结果显示,YB-145菌液拌种处理对小麦纹枯病的田间防治效果高达63.37%,使小麦增产8.2%,与化学农药6%戊唑醇悬浮种衣剂拌种处理(药剂对照)的防治效果(73.65%)和增产率(5.8%)没有明显差异。因此,贝莱斯芽孢杆菌YB-145是一株具有生防潜力的菌株,可用于小麦纹枯病的防控。 The aim was to find an excellent strain with growth‑promoting effect on wheat and efficient control of wheat sharp eyespot.Firstly,the inhibitory effect of strain YB‑145 on mycelial growth of six plant pathogens,including Rhizoctonia cerealis,Fusarium oxysporum f.sp.niveum,Bipolaris sorokinana,Alternaria solani,Fusarium moniliforme and Fusarium graminearum PH‑1 was studied in dual cultures on PDA plates.Furthermore,the strain was identified according to its morphological,physiological and biochemical characteristics and 16S rRNA gene sequencing.The growth‑promoting effect of strain YB‑145 on wheat and its biological control effect on sharp eyespot were determined by Petri dish,pot and field experiments.The results showed that strain YB‑145 was identified as Bacillus velezensis,which could produce IAA(indole acetic acid)and siderophores and had extracellular protease andβ‑1,3‑glucanase activities.In dual cultures,Bacillus velezensis YB‑145 significantly inhibited mycelial growth of 6 plant pathogens,especially R.cerealis.Bacillus velezensis YB‑145 at doses of 1×10^(7) cfu/mL and 1×10^(8) cfu/mL significantly promoted growth of wheat seedlings with more fresh weight of roots,fresh weight of shoots and height of shoots.Moreover,the efficacy of Bacillus velezensis YB‑145 at a doses of 1×10^(8) cfu/mL in controlling wheat sharp eyespot reached 73.31%.Field investigation showed that the control effect of strain YB‑145 on sharp eyespot was up to 63.37%and the yield of wheat increased by 8.2%.The control effect(73.65%)and yield‑increasing rate of wheat(5.8%)of the treatment with 6%tebuconazole suspension had no significant difference with YB‑145.The above results demonstrate that Bacillus velezensis YB‑145 is a promising biological control agent to both promote wheat growth and suppress wheat sharp eyespot.
作者 夏明聪 邓晓旭 齐红志 谢夏 徐文 张洁 孙润红 潘娅梅 武超 杨丽荣 XIA Mingcong;DENG Xiaoxu;QI Hongzhi;XIE Xia;XU Wen;ZHANG Jie;SUN Runhong;PAN Yamei;WU Chao;YANG Lirong(Institute of Plant Protection Research,Henan Academy of Agricultural Sciences/Biological Pesticides Engineering Research Center of Henan Province,Zhengzhou 450002,China;Institute of Agricultural Economics and Information,Henan Academy of Agricultural Sciences,Zhengzhou 450002,China)
出处 《河南农业科学》 北大核心 2021年第10期76-83,共8页 Journal of Henan Agricultural Sciences
基金 河南省农业科学院优秀青年基金项目(2018YQ16) 河南省农业科学院重大科技成果培育计划项目(20191101004) 中央引导地方科技发展专项(豫财科【2020】44号) 河南省农业科学院“现代农业科技综合示范县”—兰考县(2021年度)项目。
关键词 贝莱斯芽孢杆菌 禾谷丝核菌 小麦纹枯病 促生作用 生物防治 Bacillus velezensis Rhizoctonia cerealis Wheat sharp eyespot Growth promotion Biological control
  • 相关文献

参考文献3

二级参考文献61

  • 1赵翔,谢志雄,陈绍兴,沈萍.适合高产铁载体细菌筛选、检测体系的改进与探析[J].微生物学通报,2006,33(6):95-98. 被引量:33
  • 2Arcand M M, Knight J D, Farrell R E. Differentiating between the supply of N to wheat from above and belowground residues of preceding crops of pea and canola. Biology and Fertility of Soils, 2013, DOI:10.1007//s00374-013 -0877-4.
  • 3Gale W J, Cambardella C A. Carbon dynamics of surface residue and root-derived organic matter under simulated uo-till. Soil Science Society of America Journal, 2000, 64 : 190-195.
  • 4Ibrahim M, Cao C G, Zhan M, et al. Changes of CO2emission and labile organic carbon as influenced by rice straw and different water regimes. International Journal of Envirnnmental Science and Technology, 2013, DOI : 10.1007//s13762 -013 -0429 -3.
  • 5Dean A. Martens plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology & Biochemistry, 2000, 52(3) : 361-369.
  • 6lqbal A, Gamier P, Lashermes G, et al. A new equation to simulate the contact between soil and maize resid-ues of differenl sizes during their decomposition. Biology and Fertihy of Soils, 2013, DOI: 10. 1007//s00374-013-0876-5.
  • 7Toenshoff C, Joergensen R G, Stuelpnagel R, et al. Carbon in plant biomass and soils of poplar and willow plantations Implications for SOC distribution in different soil fractions after reconversion to arable land. Plant and Soil, 2012, 367:407-417.
  • 8Charlotte T, Rainer G J, Reinhold S, et al. Initial decomposition of post-harvest crown and root residues of poplars as affected by N availability and particle size. Biology and Fertility of Soils, 2013, DOI 10. 1007//s00374-013 -0882-7.
  • 9Lundquist E J, Jackson L E, Scow K M, et al. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils. Soil Biology & Biochemistry, 1999, 31 ( 2 ) :221- 236.
  • 10Haack S K, Garchow H, Klug M J, et al. Analysis of factors affecting the accuracy, reproducibility and interpretation of micro- bial community carbon source utilization patterns. Applied Environmental Microbiolog, 1995, 61 ( 8 ) : 1458-1468.

共引文献186

同被引文献334

引证文献20

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部