期刊文献+

一株耐铬菌株的分离、鉴定及其耐铬性能的检测 被引量:1

Isolation,Identification and Determination of A Chromium-Research Strain
下载PDF
导出
摘要 铬污染对环境和人类健康的危害日益严重,Cr(Ⅵ)和Cr(Ⅲ)是最常见的形态。与Cr(Ⅲ)相比,Cr(VI)毒性更大,更容易被人体吸收,对人体危害更大。因此,将有毒Cr(Ⅵ)转化为Cr(Ⅲ)是一种公认的铬解毒策略。从土壤中分离出一株能耐受高浓度Cr(Ⅵ),并对Cr(Ⅵ)具有较高去除作用的菌株,命名为FDR11。该菌株表现出较强的盐浓度、pH值和温度适应性。FDR11在24 h内能将0.5 mmol/L Cr(Ⅵ)完全去除,在2.5 mmol/L浓度的Cr(Ⅵ)溶液中,去除率仍能达到55%。此研究发现的FDR11可以作为铬污染生物修复的高活性菌株。 Chromium contamination has been an increasing threat to the environment and to human health.Cr(VI)and Cr(III)are the most common states of chromium.However,compared with Cr(III),Cr(VI)is more toxic and more easily absorbed,therefore,it is more harmful to human beings.Therefore,the conversion of toxic Cr(VI)into Cr(III)is an accepted strategy for chromium detoxification.Here,we isolated a strain with high Cr(VI)tolerance and high Cr(VI)removal from the soil,named FDR11.The strain showed strong adaptability to salt concentration,pH value and temperature.FDR11 can completely remove 0.5mmol/L Cr(VI)in 24 hours,and the removal rate can still reach 55%in 2.5mmol/L Cr(VI)solution.FDR11 found in this study can be used as a highly active bioremediation strain for chromium contamination.
作者 饶圣宏 刘磊 胡建国 Rao Shenghong;Liu Lei;Hu Jianguo(School of Nursing,Anhui Sanlian University,Hefei City,Anhui Province 230601;Anhui Province Key Laboratory of Medical Physics and Technology,Center of Medical Physics and Technology,Hefei Institutes of Physical Science,Chinese Academyof Sciences,Hefei City,Anhui Province 230031)
出处 《黄河科技学院学报》 2021年第11期82-87,共6页 Journal of Huanghe S&T College
基金 安徽省高校优秀青年人才支持计划项目(gxyq2019142)。
关键词 蜡样芽孢杆菌 16SrDNA测序 bacillus cereus 16SrDNA sequencing chromium
  • 相关文献

二级参考文献42

  • 1Ackerley D F, Gonzalez C F, Park C H, Blake R, Keyhan A, Matin A, 2004. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 70: 873- 888.
  • 2Ahluwalia S S, Goyal D, 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98: 2243-2257.
  • 3APHA, 1989. Standard Methods for the Examination of Water and Wastewater (18th ed.). Washington DC.
  • 4Ballatori N, 1994. Glutathione mercaptides as transport forms of metals. Advances in Pharmacology, 27: 271-298.
  • 5Basu M, Bhattacharya S, Paul A K, 1997. Isolation and characterization of chromium resistant bacteria from tannery effluents. Bulletin of Environmental Contamination and Toxicology, 58: 535-542.
  • 6Camargo F A O, Bento F M, Okeke B C, Frankenberger W T, 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. Journal of Environmental Quality, 32: 1228-1233.
  • 7Campos J, Martinez-Pacheco M, Cervantes C, 1995. Hexavalent chromium reduction by a chromate-resistant Bacillus sp. strain. International Journal of General Molecular Microbiology, 68: 203-208.
  • 8Campos V L, Moraga R, Yanez J, Zaror C A, Mondaca M A, 2005. Chromate reduction by Serratia marcescens isolated from tannery effluent. Bulletin of Environmental Contamination and Toxicology, 75: 400-406.
  • 9Carozzi N B, Kramer V C, Warren G W, Evola S, Koziel M G, 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology, 57: 3057-306.
  • 10Chardin B, Giudici-Orticoni M T, De Luca G, Guigliarelli B, Bruschi M, 2003. Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Applied Microbiology and Biotechnology, 63: 315-321.

共引文献18

同被引文献18

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部