期刊文献+

杂化纳米Gd_(0.1)Ce_(0.9)O_(2-δ)湿敏传感器的性能研究 被引量:2

Research of Performance of Hybridized Nano-Gd_(0.1)Ce_(0.9)O_(2-δ)-δHumidity Sensitive Sensor
下载PDF
导出
摘要 采用溶胶凝胶法制备了摩尔分数为10%的钆离子掺杂二氧化铈的Gd_(0.1)Ce_(0.9)O_(2-δ)(GDC10)纳米粉体,并通过一系列测试表征了粉体的物相、形貌结构、晶粒尺寸及比表面积,利用高压喷涂法在金叉指电极上制备出电容式湿敏传感器,研究了传感器在频率为100 Hz环境下的湿敏特性。结果表明,GDC10具备良好的湿敏性能,它的介电常数随湿度增加而快速增加,湿度传感器的介电常数增长率达到6.72,是纯CeO_(2)的25倍,最大滞后误差约为4.9%,响应恢复时间低于1 min,并且具有极好的重复性。最后,分析了GDC10的高增敏湿敏机制。 The Moore component of 10%Gd ion-doped Gd_(0.1)Ce_(0.9)O_(2-δ)(GDC10)nano-powder were prepared by sol-gel method.The phase,morphology structure,grain size and specific surface area of the powder were analyzed and characterized by a series of testing methods,and a capacitive humidity sensor was fabricated on a gold interdigitated electrode by the method of high voltage spraying,and the humidity sensing characteristics of the sensor under a frequency of 100 Hz were investigated.The results reveal GDC10 composites have good humidity sensing properties,and its dielectric constant rapidly increases with the increasing of relative humidity.Dielectric constant growth rate is up to 6.72,which is 25 times as much as pure CeO _(2),and the maximum hysteresis error is about 4.9%,and response recovery time is less than 1 minute,and good repeatability are achieved on this sample.Finally,the mechanism of high humidity sensitivity for GDC10 material is analyzed.
作者 朱桂兵 汪春昌 Suaib Adim ZHU Gui-bing;WANG Chun-chang;Suaib Adim(Nanjing Vocational College of Information Technology,Nanjing 210046,China;Laboratory of Dielectric Functional Materials,Anhui University,Hefei 213001,China)
出处 《仪表技术与传感器》 CSCD 北大核心 2021年第11期23-27,32,共6页 Instrument Technique and Sensor
基金 南京信息职业技术学院“青蓝工程”中青年学术带头人项目(NXQX202002) 国家自然科学基金资助项目(51502001,51572001)。
关键词 湿敏 纳米薄膜 溶胶凝胶法 掺杂氧化铈 传感器 杂化 humidity sensitivity nanometer film sol-gel method doping cerium oxide sensor hybridization
  • 相关文献

参考文献11

二级参考文献113

  • 1吴月茹,王维真,晋锐,王建,车涛.TDR测定土壤含水量的标定研究[J].冰川冻土,2009,31(2):262-267. 被引量:29
  • 2刘兆东,许言,刘环鹏,李萌.电容式湿度传感器性能测试方法分析[J].信息技术,2007,31(2):77-79. 被引量:1
  • 3Muzikante I, Parra V, Dobulans R, et al. A novel gas sensor transducer based on phthalocyanine heterojunction devices. Sensors, 2007, 7:2984.
  • 4Saleem M, Sayyad M H, Ahmed Z, et al. Effects of orange dye concentration on electrochemical properties of zinc/orange dye acqueous solution/carbon cells. Kuwait J Sci Eng, 2009, 36(1): 77.
  • 5Rittersma Z M. Recent achievements in miniaturised humidity sensors--a review of transduction techniques. Sensors and Actuators A: Physical, 2002, 96(2/3): 196.
  • 6Ahmad Z, Sayyad M H, Saleem M, et al. Humidity dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Physica E, 2008, 41:18.
  • 7Operea A, Barsan N, Weimar U, et al. Capacitive humidity sensors on flexible RFID labels. Sensors and Actuators B: Chemical, 2008, 132(2): 404.
  • 8Li Y, Yang M J, Camaioni N, et al. Humidity sensors based on polymer solid electrolytes: investigation on the capacitive and resistive devices construction. Sensors and Actuators B: Chemical, 2001, 77(3): 625.
  • 9Yao W, Chen X, Zhang J. A capacitive humidity sensor based on gold-PVA core-shell nanocomposites. Sensors and Actuators B: Chemical, 2010, 145(1): 327.
  • 10Saleem M, Sayyad M H, Karimov K S, et al. Cu(Ⅱ) 5,10,15,20- tetrakis(4'-isopropylphenyl) porphyrin based surface-type resistive--capacitive multifunctional sensor. Sensors and Actuators B: Chemical, 2009, 137(2): 442.

共引文献18

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部