期刊文献+

锂金属电池中枝晶的研究进展 被引量:1

Research progress of dendrites in lithium metal batteries
下载PDF
导出
摘要 相比于当前大规模商用化的锂离子电池,锂金属电池具有超高的理论能量密度,随着锂离子电池的实际能量密度逐渐趋近于它的理论能量密度,对更高能量密度电池的需求驱使着人们将目光放在锂金属电池上。但是锂金属电池在实际应用中存在安全隐患,其原因是Li^(+)容易在阳极不平整的表面不均匀沉积形成锂枝晶,进而导致电池性能降低,甚至引起如短路、起火或爆炸等安全问题。本文综述了锂金属电池中锂枝晶的形成机理及抑制锂枝晶的方法,并对其存在的关键问题和发展前景进行了讨论。 Compared with current large-scale commercial lithium-ion batteries,lithium-metal batteries have a sky-high theoretical energy density.As the actual energy density of lithium-ion batteries gradually approaches its theoretical energy density,the demand for higher energy density batteries drives people to pay attention to lithium-metal batteries.However,there are potential safety hazards in the practical application of lithium metal batteries.The reason is that Li^(+) tends to deposit on the uneven surface of the anode to form lithium dendrites,which will lead to the performance degradation of the battery,and even cause safety problems such as short circuit,fire or explosion.This review summarizes the formation mechanism of lithium dendrite and the methods of inhibiting lithium dendrite in lithium-metal batteries,and discussed the key problems and recent development prospects of lithium dendrite.
作者 汪炳前 鲁书涵 吴建宝 WANG Bing-qian;LU Shu-han;WU Jian-bao(School of Mathematics,Physics and Statistics,Shanghai University of Engineering Science,Shanghai,201620,China)
出处 《化学研究与应用》 CAS CSCD 北大核心 2021年第11期2049-2058,共10页 Chemical Research and Application
基金 国家自然基金理论物理专项(11047164)资助。
关键词 锂金属电池 锂枝晶 电解质添加剂 人工SEI lithium metal batteries lithium dendrites electrolyte additives artificial SEI
  • 相关文献

参考文献4

二级参考文献43

  • 1PITCHAI R, THAVASI V, MHAISALKAR S G,et al. Nanostruc-tured cathode materials: a key for better performance in Li-ion bat-teries[J]. J Mater Chem, 2011(21): 11040-11051.
  • 2XIA Y,ZHOU Y,YOSHIO M. Capacity fading on cycling of 4 VLi/LiMn204cells[J]. J Electrochem Soc, 1997, 144: 2593.
  • 3SU L W, JING Y, ZHOU Z. Li ion battery materials with core-shellnanostructures[J]. Nanoscale, 2011(3): 3967-3983.
  • 4AMATUCCI G, PASQUIER A D,BLYR A, et al. The elevatedtemperature performance of the LiMn2OVC system: failure and so-lutions[J]. Electrochim Acta, 1999,45: 255.
  • 5LI X F, XU Y L, WANG C L. Suppression of Jahn-Teller distortionof spinel LiMn204 cathode [J]. J Alloy Compd, 2009,479: 310-313.
  • 6HUANG B, LI X H, WANG Z X,et al. A novel carbamide-assis-tant hydrothermal process for coating A1203 onto LiMn! 5Ni0.5O4 par-ticles used for cathode material of lithium-ion batteries [J]. Journalof Alloys and Compounds, 2014, 583: 313-319.
  • 7LI X F, XU Y L, WANG C L. Novel approach to preparation ofLiMn204 core/LiNi>Mn2 -^04 shell composite [J]. Appl Surf Sci,2009,255:5651-5655.
  • 8DEVARAJU M K, HONMA I. Hydrothermal and solvothermal pro-cess towards development of LiMP04 (M=Fe, Mn) nanomaterialsfor lithium-ion battenes[J]. Adv Energy Mater, 2012(2): 284-297.
  • 9YAO J, SHEN C, ZHANG P, et al. Spinel-Li3 s,Ji5012 coatedLiMn204 with high surface Mn valence for an enhanced cyclingperformance at high temperature [J]. Electrochemistry Communica-tions, 2013,31: 92-95.
  • 10Huang D. Solid solution:new cathodes for next generation lithium-ion batteries [ J ] . Adv Battery Technol, 1998, 11 ( 1 ) :23-27.

共引文献9

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部