摘要
针对已知起点和终点、而环境信息未知情况下的探索航迹规划问题,提出了融合生物信息素的改进稀疏A^(*)无人机探索航迹规划算法。以激光雷达获取的局部地图信息为基础,通过引入生物信息素,对稀疏A^(*)算法中的代价函数进行优化,实现未知环境下自主规避障碍物,并避免环境重复探索。在此基础上,提出了基于机器人操作系统(ROS)的物理实施途径。通过“回”字形场景下的仿真实验对比,验证了所提算法可避免环境重复探索的有效性。此外,在“回”字形基础上,将所提算法推广应用于柱状障碍物场景。实验结果表明:所提出的融合生物信息素的改进稀疏A*探索航迹规划算法能有效实现未知环境探索航迹规划。
Aiming at the problem of trajectory planning exploration when the starting point and ending point are known and the environmental information is unknownan improved sparse A^(*) UAV trajectory planning exploration method incorporating pheromone is proposed.Based on the local map information obtained by lidar and by introducing the pheromonethe cost function in the sparse A^(*) algorithm is optimized to realize autonomous avoidance of obstacles in unknown environment without repeated exploration.On this basisa physical implementation approach based on Robot Operating System(ROS)is proposed.Under spiral-form obstacle sceneit is verified that the method can avoid repeated exploration of the environment.In additionthe method is extended to the columnar obstacle scene.The experimental results show that the method can effectively achieve the exploration of trajectory planning in the unknown environment.
作者
周思达
王文豪
唐嘉宁
潘蓉
ZHOU Sida;WANG Wenhao;TANG Jianing;PAN Rong(Yunnan Minzu University,Kunming 650000,China)
出处
《电光与控制》
CSCD
北大核心
2021年第11期26-30,共5页
Electronics Optics & Control
基金
国家自然科学基金(61963038)。
关键词
航迹规划
生物信息素
稀疏A*
环境探索
trajectory planning
pheromone
sparse A*algorithm
environmental exploration