期刊文献+

考虑多种贝叶斯神经网络分布形式组合的设备剩余寿命预测方法 被引量:6

On RUL Prediction Method Based on Bayesian Neural Network with Different Distribution Combinations
下载PDF
导出
摘要 基于dropout NN(dropout Neural Network)的设备剩余寿命(RUL)预测方法因使用具有固定分布形式的先验与近似后验的贝叶斯神经网络(BNN)导致预测精度较低。为解决该问题,提出基于高斯近似后验BNN的RUL预测方法和基于混合高斯-伯努利网络的设备RUL预测方法,前者引入混合高斯分布作为先验,通过对参数梯度进行无偏蒙特卡罗估计以优化BNN,后者引入一种离散化的高斯先验分布以正确地定义KL散度,进而可以优化BNN。在PHM 2012轴承数据集上的验证结果表明所构建的混合高斯-高斯网络效果好于dropout NN,证明了改变分布组合可以获得更好的预测效果。 The equipment Remaining Useful Lifetime(RUL) prediction method based on dropout Neural Network(dropout NN) has low precision since it uses a Bayesian Neural Network(BNN) with fixed priori distribution and approximate posterior distribution.To solve the problem, we proposed a RUL prediction method based on BNN with Gaussian approximation posterior distribution and a RUL prediction method based on mixed Gaussian-Bernoulli network.The former introduces the mixed Gaussian distribution as priori distribution and then optimizes BNN by unbiased Monte Carlo estimation of parameter gradient, while the latter introduces a discretized Gaussian prior distribution to define KL divergence correctly, and then optimizes the BNN.The verification results on PHM 2012 bearing dataset show that the mixed Gaussian-Gaussian network has better effect than dropout NN,which proves that BNN with the changed distribution combination can obtain better prediction effect.
作者 胡城豪 胡昌华 HU Chenghao;HU Changhua(Rocket Force University of Engineering,Xi'an 710000,China)
机构地区 火箭军工程大学
出处 《电光与控制》 CSCD 北大核心 2021年第11期79-83,共5页 Electronics Optics & Control
基金 国家自然科学基金(61773389,61833016,61903376)。
关键词 设备剩余寿命预测 深度学习 贝叶斯神经网络 混合高斯-高斯网络 equipment remaining useful lifetime prediction deep learning Bayesian neural network mixed Gaussian-Gaussian network
  • 相关文献

参考文献4

二级参考文献24

共引文献17

同被引文献78

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部