期刊文献+

基于DeepLabv3+网络的电流互感器红外图像分割方法 被引量:8

DeepLabv3+Network-based Infrared Image Segmentation Method for Current Transformer
下载PDF
导出
摘要 红外图像智能分析是变电设备故障诊断的一种有效方法,目标设备分割是其关键技术。本文针对复杂背景下电流互感器整体分割难的问题,采用基于ResNet50的DeepLabv3+神经网络,用电流互感器的红外图像训练语义分割模型的方法,对收集到的样本采用限制对比度自适应直方图均衡化方法实现图像轮廓增强,构建样本数据集,并运用图像变换扩充样本数据集,搭建语义分割网络训练语义分割模型,实现电流互感器像素与背景像素的二分类。通过文中方法对420张电流互感器红外图像测试,结果表明,该方法的平均交并比(Mean Intersection over Union,MIoU)为87.5%,能够从测试图像中精确分割出电流互感器设备,为后续电流互感器的故障智能诊断做铺垫。 Infrared image intelligent analysis is an effective method for the fault diagnosis of transformer equipment,and its key technology is target device segmentation.In this study,aiming to address the difficulty in overall segmentation of current transformers with complex backgrounds,the DeepLabv3+neural network based on ResNet50 was applied to train the semantic segmentation model with infrared image of CT.The collected samples were enhanced by the limited contrast adaptive histogram equalization method,and a sample dataset was constructed.The sample dataset was expanded by image distortion,and a semantic segmentation network was built to train the semantic segmentation model to realize the binary classification of current transformer pixels and background pixels.The test results of 420 current transformer infrared images showed that the MIOU of this method is 87.5%,which can accurately divide the current transformer equipment from the test images and lay a foundation for the subsequent intelligent fault diagnosis of current transformers.
作者 袁刚 许志浩 康兵 罗吕 张文华 赵天成 YUAN Gang;XU Zhihao;KANG Bing;LUO Lyu;ZHANG Wenhua;ZHAO Tiancheng(School of Electrical Engineering Nanchang Institute of Technology,Nanchang 330099,China;Electric Power Science Research Institute of State Grid Jilin Electric Power Co.,LTD.,Changchun 130021,China)
出处 《红外技术》 CSCD 北大核心 2021年第11期1127-1134,共8页 Infrared Technology
基金 吉林省电力科学研究院有限公司科技项目(KY-GS-20-01-07)。
关键词 红外图像 电流互感器 ResNet50 DeepLabv3+ 语义分割 infrared image current transformer ResNet50 DeepLabv3+ semantic segmentation
  • 相关文献

参考文献8

二级参考文献67

  • 1柳长安,叶文,吴华,杨国田.融合地理位置信息的电力杆塔检测[J].华中科技大学学报(自然科学版),2013,41(S1):208-210. 被引量:12
  • 2刘元锦.变电站的运行与故障处理[M].北京:中国水电出版社,2004.
  • 3汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971. 被引量:135
  • 4梁利利,赵高长.变电站红外图像的识别与故障诊断[D]西安:西安科技大学理学院,2010.
  • 5王如意.变电站电力设备红外图像分割技术研究[J].西安:西安科技大学,2011.
  • 6LOWE,DAVID G.Object recognition from local scale-invariant features[C]//Proceedings of the International Conference on Computer Vision,1999:1150-1157.
  • 7BAY H,ESS A,TUYTELAARS T,et al.SURF:speeded up robust features[J].Computer Vision and Image Understanding,2008,110(3):346-359.
  • 8DALAL H N,TRIGGS B.Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005,1:886-893.
  • 9BENGIO Y.Learning deep architectures for AI[M].Foundations and Trends in Machine Learning,2009,2(1):1-56.
  • 10LEVINSHTEIN A,STERE A,KUTULAKOS K,et al.Turbopixels:fast superpixels using geometric flows[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2290-2297.

共引文献269

同被引文献182

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部