摘要
令b∈BMO(R^(n)),本文主要研究粗糙核奇异积分的Toeplitz-型算子T b=∑m k=1 T^(k,1) M bT^(k,2)的端点估计,其中T^(k,1)是粗糙核奇异积分算子,T^(k,2)是线性算子,M_(b)(f)=bf.利用A_(p)权不等式,证明了T_(b)是从L^(∞)(ω)到BMO(ω)上的有界算子,并且得到T_(b)是从B_(p)(ω)到CMO_(A)(ω)上的有界算子.
As b∈BMO(R^(n)),the main purpose of this paper is to study the end-point estimation of Toeplitz-type operator T b=∑m k=1 T^(k,1) M bT^(k,2),where T^(k,1) is the singular integrals with rough kernels,T^(k,2) is the linear operators,and M b(f)=bf.By applying A_(p) weight inequalities,it is proved that T_(b) is bounded from L^(∞)(ω)to BMO(ω),and from B_(p)(ω)to CMO_(A)(ω)as well.
作者
高亚瑞
陶双平
GAO Yarui;TAO Shuangping(School of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第12期81-87,共7页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(11561062).