期刊文献+

Recent progress in solution assembly of 2D materials for wearable energy storage applications 被引量:1

下载PDF
导出
摘要 Wearable energy storage devices are desirable to boost the rapid development of flexible and stretchable electronics. Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides and oxides, and MXenes, have attracted intensive attention for flexible energy storage applications because of their ultrathin 2D structures, high surface-to-volume ratio, and unique physical/chemical properties. To achieve commercialization of 2D material-based wearable energy storage devices (2DM-WESDs), scalable and cost-efficient manufacturing is a critical challenge. Among existing manufacturing technologies, solution-based assembly strategies show strong potential to achieve low-cost and scalable production. A timely review of the recent progress in solution-based assembly strategies and the resultant 2DM-WESDs will be meaningful to guide the future development of 2DM-WESDs. In this review, first, a brief introduction of exfoliation and solution preparation of 2D material species from bulk materials is discussed. Then, the solution-based assembly strategies are summarized, and the advantages and disadvantages of each method are compared. After that, two major categories of 2DM-WESDs, supercapacitor and battery, are discussed, emphasizing their state-of-the-art energy storage performances and flexibilities. Finally, insights and perspectives on current challenges and future opportunities regarding the solution assembly of 2DM-WESDs are discussed.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期27-42,I0002,共17页 能源化学(英文版)
基金 This material is based upon work supported by the National Science Foundation,United States,NSF#2003077.Villanova University,United States,Villanova startup fund.
  • 相关文献

参考文献2

二级参考文献5

共引文献28

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部