期刊文献+

一种改进ORB特征匹配的半稠密三维重建ORB-SLAM算法 被引量:5

A Semi-Dense 3D Reconstruction ORB-SLAM Algorithm with Improved ORB Feature Matching
下载PDF
导出
摘要 视觉SLAM技术的目标是建立完善的地图及估计更精确的相机位姿。为了构建更加详细完整的三维地图,文中提出一种改进ORB特征匹配的半稠密三维重建ORB-SLAM算法来实现环境稀疏三维点云地图的构建。所提方法在ORB-SLAM算法的基础上,增加半稠密建图线程,建立半稠密三维点云地图,利用SURF特征匹配算法尺度不变性的特点改进了ORB特征匹配。在TUM RGBD数据集中进行的仿真实验结果表明,与ORB-SLAM算法相比,采用改进ORB-SLAM算法建立的三维地图能更加直观地显示出环境中物体的轮廓,特征匹配精度也有所增加。最后,应用两组数据集验证了算法的一致性。 The goal of visual SLAM technology is to build a more complete map and estimate a more accurate camera pose.To construct a more detailed and complete 3D map,a semi-dense 3D reconstruction ORB-SLAM algorithm with improved ORB feature matching is proposed to realize the construction of a sparse 3D point cloud map of the environment.On the basis of the ORB-SLAM algorithm,a semi-dense mapping thread is added to establish a semi-dense 3D point cloud map.Then,the scale invariance of SURF feature matching algorithm is used to improve ORB feature matching.Simulation experiments in the TUM RGBD datasets reveal that the 3D map established by the improved ORB-SLAM algorithm can more intuitively exhibit the contours of objects in the environment when compared with the ORB-SLAM algorithm,and the feature matching accuracy is increased.Finally,the consistency of the algorithm is verified by experiments in two datasets.
作者 陈文佑 章伟 史晓帆 宋芳 CHEN Wenyou;ZHANG Wei;SHI Xiaofan;SONG Fang(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《电子科技》 2021年第12期62-67,共6页 Electronic Science and Technology
基金 国家自然科学基金(51505273)。
关键词 视觉SLAM 半稠密 三维重建 ORB特征匹配 SURF算法 单目视觉 计算机视觉 图像处理 visual SLAM semi-dense three-dimensional reconstruction ORB feature matching SURF algorithm monocular vision computer vision image processing
  • 相关文献

参考文献2

二级参考文献101

  • 1Sinha S N, Frahm J M, Pollefeys M, et al. Feature tracking and matching in video using programmable graphics hardware. Machine Vision and Applications, 2011; 22( 1 ) :207-217.
  • 2Lowe D G. Distinctive image features from scale-invariant Keypoints. International Journal of Computer Vision, 2004 ; 60 ( 2 ) : 91-100.
  • 3Herbert Bay, Andreas Ess, Tinne Tuytelaar, et al. Speeded-up robust Feature(SURF). Computer Vision and Image Understanding, 2008; 110(3) :346-359.
  • 4Rublee E, Rabaud V, Konolige K, et al. ORB i an efficient alternative to SIFT or SURF. Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain,2011:2564-2571.
  • 5Lindeberg T. Feature detection with automatic scale selection. Inter- national Journal of Computer Vision, 1998,30 (2) :79-116.
  • 6Smith R C, Cheeseman P. On the representation and estimationof spatial uncertainty[J]. International Journal of Robotics Research,1986, 5(4):56-68.
  • 7Smith R, Self M, Cheeseman P. Estimating uncertain spatialrelationships in robotics[M] //Autonomous Robot Vehicles. NewYork: Springer, 1990: 167-193.
  • 8Durrant-Whyte H, Bailey T. Simultaneous localization andmapping: Part I[J]. IEEE Robotics & Automation Magazine,2006, 13(2): 99-110.
  • 9Bailey T, Durrant-Whyte H. Simultaneous localization andmapping(SLAM): Part II[J]. IEEE Robotics & AutomationMagazine, 2006, 13(3): 108-117.
  • 10Hartley R, Zisserman A. Multiple view geometry in computervision[M]. Cambridge: Cambridge University Press, 2004.

共引文献194

同被引文献47

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部