摘要
湿法工艺设备中经常使用到具有强腐蚀性的强酸类高温化学液,例如160℃的SPM、270℃的H_(2)SO_(4)+H_(3)PO_(4)混合液等。普通的排放方式无法实现高温化学液直接排放。先自然降温再排放的方式换液时间长,各种辅助降温方式,都存在着不足和安全隐患,降温效果不甚理想。以虹吸原理和射流泵理论为基础,通过理论计算、场强模拟,提出两种适用于高温、强腐蚀性化学液直接排放的技术:一种是设计气虹吸吸液器,验证关键尺寸喉嘴距,最终实现了湿法工艺设备中的高温化学液直排到副槽,在副槽内降温后,排放至专用回收管路。另一种是设计水虹吸泵,通过实验验证关键尺寸,实现湿法工艺设备中的高温化学液直接降温排放至化学液回收管路。两种直排方式都可以有效地缩短高温化学液的换液时间,提高生产效率。
High temperature chemical liquids with strong corrosive acids are often used in wet process equipment,such as SPM at 160℃and H_(2)SO_(4)+H_(3)PO_(4)mixture at 270℃.Ordinary discharge methods cannot achieve direct discharge of high-temperature chemical liquid.The method of natural cooling first and then discharge takes a long time to change liquid.All kinds of auxiliary cooling methods have shortcomings and safety risks,and the cooling effect is not ideal.Based on siphon principle and jet pump theory,this paper proposes two kinds of technologies suitable for direct discharge of high temperature and strong corrosive chemical liquid through theoretical calculation and field intensity simulation:One is the gas siphon suction device was designed to verify the key size of the nozzle distance.Finally,the high-temperature chemical liquid in the wet process equipment was directly discharged to the secondary tank,and after cooling in the secondary tank,it was discharged to the special recovery pipeline.Another is designed the water siphon pump,verified the key dimensions through experiments,and realized the direct cooling and discharge of high-temperature chemical liquid in the wet process equipment to the chemical liquid recovery pipeline.Both of them can effectively shorten the liquid exchange time of high-temperature chemical liquid and improve the production efficiency.
作者
吴娖
祝福生
赵宝君
秦亚奇
安稳鹏
WU Chuo;ZHU Fusheng;ZHAO Baojun;QIN Yaqi;AN Wenpeng(The 45^(th) Research Institute of CETC,Beijing 100176,China)
出处
《电子工业专用设备》
2021年第5期60-63,67,共5页
Equipment for Electronic Products Manufacturing
关键词
高温化学液
直排技术
虹吸原理
射流泵原理
喉嘴距
High temperature chemical
Direct discharge technique
Siphon principle
Theory of jet pump
Throat mouth distance