期刊文献+

燃烧室涡轮交互作用尺度自适应模拟 被引量:2

Combustor turbine interaction based on scale adaptive simulation
原文传递
导出
摘要 为了揭示燃烧室涡轮交互作用机理,采用尺度自适应模拟方法对某航空发动机燃烧室和燃气涡轮开展了跨部件联合数值模拟研究,分析了燃气涡轮导叶对燃烧室内部流场和温度场的影响、燃烧室出口速度分布和热斑对涡轮气动和传热的影响。结果表明:尺度自适应模拟方法在预测燃烧室和燃气涡轮部件性能方面具有较高精度,并能有效捕捉燃烧室及涡轮流道中的复杂涡系结构。同时,涡轮对燃烧室内部速度场的影响一直可以回溯至导叶上游0.3倍弦长的距离,燃烧室出口速度分布对涡轮内部流动、热斑对燃气涡轮导叶及动叶绝热壁温均有较大影响。 In order to study the mechanisms of combustor turbine interactions,integrated simulation of a realistic aero engine configuration,including combustor and turbine,was conducted by using scale adaptive simulation method.The impacts of the turbine nozzle guide vane on flow and temperature fields inside the combustor together with the effect of the velocity profile in the outlet of combustor and hot-streaks on turbine thermodynamics characteristics were both analyzed by the integrated simulation.The results demonstrated that the scale adaptive simulation method obtained a fine prediction on combustor and turbine performances and the complicated vortex structures were well resolved.Moreover,the velocity field inside combustor was distinctly influenced by the nozzle guide vane up to a distance of 0.3 axial chord length in front of the stator.s leading edge,and the impacts of velocity profile in the outlet of combustor and hot-streaks on the turbine aerodynamics and heat transfer were quite significant.
作者 江立军 曹俊 陶焰明 熊清勇 肖为 JIANG Lijun;CAO Jun;TAO Yanming;XIONG Qingyong;XIAO Wei(Hunan Aviation Powerplant Research Institute,Aero Engine Corporation of China,Zhuzhou Hunan 412002,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2021年第10期2186-2196,共11页 Journal of Aerospace Power
基金 中国航发自主创新专项资金(ZZCX-2017-018) 国家科技重大专项(2017-Ⅰ-0001-0001)。
关键词 燃烧室 涡轮 交互作用 尺度自适应模拟 热斑 combustor turbine interaction scale adaptive simulation hot-streaks
  • 相关文献

参考文献4

二级参考文献60

  • 1赵庆军,王会社,赵晓路,徐建中.无导叶对转涡轮进口热斑迁移特性分析[J].工程热物理学报,2007,28(1):40-42. 被引量:5
  • 2Povey T, Chana K S, Jones T V, et al. The Effect of Hot- Streaks on HP Vane Surface and Endwall Heat Transfer:An Experimental and Numerical Study. ASME Paper 2005-GT-69066, 2005
  • 3Butler T L, Sharma O P, Joslyn H D, et al. Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage. AIAA Journal of Propulsion and Power, 1989, 5(1): 64-71
  • 4Stabe R G, Whitney W J, Moffitt T P. Performance of a High-Work Low-Aspect Ratio Turbine Tested with a Realistic Inlet Radial Temperature Profile, AIAA Paper 84-1161, 1984
  • 5Munk M, Prim R C. On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern. Proceedings of the National Academy of Sciences, U.S., 1947, 33: 137-141
  • 6Takahashi R K, NiRH. Unsteady Hot Streak Simulation through a 1-1/2 Stage Turbine. AIAA Paper 91-3382, 1991
  • 7Shang T, Epstein A H. Analysis of Hot Streak Effects on Turbine Rotor Heat Load. ASME Journal of Turbomachinery, 1997, 119(3): 544-553
  • 8Aksoy H, Liu J S, Couey P, et al. Three-Dimensional Analysis of Hot Streak Attenuation in a High Pressure Turbine Stage. AIAA Paper 2002-3646, 2002
  • 9He L, Menshikova V, Haller B R. Influence of Hot Streak Circumferential Length-Scale in Transonic Turbine Stage. ASME Paper 2004-GT-53370, 2004
  • 10Lakshminarayana B, Horlock J H. Generalized Expressions for Secondary Vorticity Using Intrinsic Co- Ordinates. Journal of Fluid Mechanics, 1973, 59(1): 97-115

共引文献16

同被引文献28

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部