期刊文献+

改进EWT与HHT边际谱结合的齿轮箱故障诊断方法 被引量:5

Improved Gearbox Fault Diagnosis Method Combining EWT and HHT Marginal Spectrum
下载PDF
导出
摘要 针对齿轮箱振动故障特征难提取的问题,提出一种改进的经验小波变换(EWT)与希尔伯特黄(HHT)边际谱结合的故障特征提取方法。通过EWT与改进EWT方法作对比分析,采用改进EWT对信号进行分解不仅得到的信号分量信噪比高,分量数目合理,而且可以实现自适应对信号的频谱趋势进行划分,具有更好的信号分离能力。通过振动故障模拟实验对故障齿轮的振动信号进行变换与边际谱分析,结果表明该方法可以有效提取齿轮箱振动故障特征。 Aiming at the problem that gearbox vibration fault features are difficult to extract,an improved fault feature extraction method combining empirical wavelet transform(EWT)and Hilbert-Huang(HHT)marginal spectrum is proposed.Through comparative analysis of EWT and improved EWT method,the use of improved EWT to decompose the signal not only has a high signal-to-noise ratio and reasonable number of components,but also can realize adaptive division of the signal′s spectrum trend,which has better signal separation ability.Through the vibration fault simulation experiment,the vibration signal of the faulty gear is transformed and the marginal spectrum analysis is carried out.The results show that the method can effectively extract the vibration fault characteristics of the gearbox.
作者 张思思 刘玉波 ZHANG Si-si;LIU Yu-bo(School of Mechanical Engineering,Heilongjiang University of Science and Technology,Harbin 150022,China)
出处 《煤炭技术》 CAS 北大核心 2021年第11期220-223,共4页 Coal Technology
关键词 齿轮箱故障诊断 改进EWT 希尔伯特边际谱 gearbox fault diagnosis improved EWT Hilbert marginal spectrum
  • 相关文献

参考文献8

二级参考文献57

  • 1于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:56
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:145
  • 3陈隽,徐幼麟.经验模分解在信号趋势项提取中的应用[J].振动.测试与诊断,2005,25(2):101-104. 被引量:57
  • 4丁康,米林,王志杰.解调分析在故障诊断中应用的局限性问题[J].振动工程学报,1997,10(1):13-20. 被引量:42
  • 5FENG ZH P, ZUO M J. Vibration signal models for fauh diagnosis of planetary gearboxes [ J ]. Journal of Sound and Vibration, 2012, 331(22): 4919-4939.
  • 6TENG W, WANG F, ZHANG K, et al. Pitting fault detection of a wind turbine gearbox using empirical mode decomposition [ J ]. Strojnikivestnik-Joumal of Mechanical Engineering, 2014, 60( 1 ) : 12-20.
  • 7李少华,赵明浩,陈杰,等.小波变换在风力机齿轮箱故障特征提取中的应用[C].第十二届全国设备故障诊断学术会议,2010.
  • 8LIU W Y, ZHANG W H, HAN J G, et al. A new wind turbine fault diagnosis method based on the local mean decomposition[ J ]. Renewable Energy, 2012, 48 ( 6 ) : 411-415.
  • 9GILLES J. Empirical wavelet transform [ J ]. IEEE transactions on signal processing, 2013, 61 (16): 3999-4010.
  • 10LOH C H, WU T C, HUANG N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses [ J ]. Bulletin of the Seismological Society of America, 2001, 91(5) : 1339-1357.

共引文献280

同被引文献72

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部