期刊文献+

基于种群关系的多种群粒子群协同优化算法 被引量:2

Multi-Swarm Particle Swarm Optimization Based on Population Relation
下载PDF
导出
摘要 传统粒子群优化算法容易陷入局部最优解,搜索效率不高,针对此问题,提出了一种基于种群关系和斥力因子的多种群粒子群优化算法SRB-PSO (Swarm-Relation-Based PSO).根据当前搜索结果定义种群之间统治、对等和被统治3种关系,通过引入斥力因子来保证种群间搜索的多样性,并通过统治和被统治关系提高算法的搜索效率,从而在改善算法的全局搜索性能的同时提高解的质量.将算法与其他几种主流粒子群优化改进算法在标准测试集上进行对比,实验结果证明了SRB-PSO算法能较好地保持粒子多样性,全局搜索能力强,在解决多峰函数时的性能优于其他几种主流粒子群优化改进算法. Traditional Particle Swarm Optimization(PSO) is likely to converge to local optima when applied to multimodal problems, with low search efficiency. In this study, a novel multi-swarm PSO algorithm based on swarm relations and repulsion factors is proposed, called Swarm-Relation-Based PSO(SRB-PSO). Three swarm relations,including dominance, equivalence, and weakness, are defined according to the search results. The search diversity is guaranteed by introducing repulsion factors among equivalent populations and the search efficiency is increased by dominance and weakness relations. Thus, the global search ability of the algorithm is enhanced and the solution quality is improved. The new algorithm and several other versions of PSO are compared on a set of benchmark functions. The results show that the algorithm proposed in this study can well maintain the particle diversity and has outstanding global search ability. The proposed algorithm outperforms the other algorithms when solving multimodal problems.
作者 刘悦 杨桦 王青正 LIU Yue;YANG Hua;WANG Qing-Zheng(College of Information Engineering,Kaifeng University,Kaifeng 475004,China;School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《计算机系统应用》 2021年第10期148-155,共8页 Computer Systems & Applications
基金 国家自然科学基金(61702185) 河南省高等学校重点科研项目(19B520014) 河南省高等学校青年骨干教师培养计划(2017GGJS270)。
关键词 粒子群优化 多种群 种群关系 斥力因子 多峰问题 Particle Swarm Optimization(PSO) multi-swarm swarm relation repulsion factor multimodal problem
  • 相关文献

参考文献10

二级参考文献67

  • 1温雯,郝志峰.一种基于动态拓扑结构的PSO改进算法[J].计算机工程与应用,2005,41(34):82-85. 被引量:13
  • 2王雪飞,王芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究[J].计算机科学,2007,34(3):205-207. 被引量:16
  • 3Carlisle A, Dozier G. Adapting panicle swarm optimization to dy- namic environments[ C]. Proceedings of International Conference on Artificial InteUigence,Las Vegas, USA, 2000,429-434.
  • 4Ebcrhart R C, Shi Y H. Tracking and optimizing dynamic systems with particle swarms[C]. Proceedings of the Congress on Evolu- tionary Computation,Piscataway, USA,2001,94-100.
  • 5Blackwell T M. Bentley P. Don't push me! collision avoiding swarms[ C]. Proceedings of the Congress on Evolutionary Compu- tation, 2002,1691 - 1696.
  • 6Blackwell T M, Bentley P J. Dynamic search with charged swarms [ C ]. Proceedings of the Genetic and Evolutionary Computation Conference ,2002,19-26.
  • 7Blackwell T M, Branke J. Multi-swarm optimization in dynamic environments [ C ]. Applications of Evolutionary Computing, 2004,489-500.
  • 8Blackwcll T M,Branke J. Multi-swarms, exclusion alld anti-con- vergence in dynamic environments[ J]. IEEE Transactions on Evo- lutionary Computation, 2006,10 (4) :459-472.
  • 9Parrott D, Li X. Locating and tracking multiple dynamic optima by a particle swarm model using spe.ciation[ J]. IEEE Transactions on Evolutionary Computation ,2006,10(4) : 440-458.
  • 10Wang Guang-hui, Chen Jie, Pan Feng. Cooperative multi-swarms particle swarm optimizer for dynamic environmant optimization [C]. Proceedings of the 27th Chinese Control Conference, Kun- ming, 2008,43-48.

共引文献109

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部