期刊文献+

基于多模型特征与精简注意力融合的图像分类 被引量:3

Image Classification Based on Multi-Model Feature and Reduced Attention Fusion
下载PDF
导出
摘要 为了提高图像分类性能,本文提出一种多模型特征和注意力模块融合的图像分类算法(image classification algorithm based on Multi-model Feature and Reduced Attention fusion, MFRA).通过多模型特征融合,使网络学习输入图像不同层次的特征,增加特征互补性,提高特征提取能力;通过加入注意力模块,使网络更关注有目标的区域,降低无关的背景干扰信息.本文算法在Cifar-10, Cifar-100, Caltech-101这3个公开数据集上的大量实验对比,验证了其有效性.与现有算法对比,本文算法的分类性能有较为明显的提升. To improve the performance of image classification, this paper proposes an image classification algorithm based on the fusion of Multi-model Feature and Reduced Attention(MFRA). Through multi-model feature fusion, the network can learn the features of different levels of input images, increase the complementarity of features and improve the ability of feature extraction. The introduction of the attention module makes the network pay more attention to the target area and reduces the irrelevant background interference information. In this paper, the effectiveness of the algorithm is verified by a large number of experimental comparisons on three public datasets, Cifar-10, Cifar-100 and Caltech-101.The classification performance of the proposed algorithm is significantly improved as compared with existing algorithms.
作者 宋东情 朱定局 贺超 SONG Dong-Qing;ZHU Ding-Ju;HE Chao(College of Computer Science,South China Normal University,Guangzhou 510631,China)
出处 《计算机系统应用》 2021年第11期210-216,共7页 Computer Systems & Applications
基金 中国高等教育学会专项课题(2020JXD01) 广东高校省级重点平台和重大科研项目(重大科研项目-特色创新类)(2017KTSCX048) 广东省中医药局科研项目(20191411) 广东省普通高校“人工智能”重点领域专项(2019KZDZX1027) 国家自然基金重点项目(U1811263) 广州市大数据智能教育重点实验室(201905010009) 广东省公益研究与能力建设(2018B070714018)。
关键词 多模型 注意力机制 图像分类 特征融合 深度学习 multi-model attentional mechanism image classification feature fusion deep learning
  • 相关文献

参考文献2

二级参考文献5

共引文献13

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部