期刊文献+

基于EWT-OPRCMDE-ELM的风电机组齿轮箱故障诊断研究 被引量:5

Research of Fault Diagnosis of Wind Turbine Gearbox Based on EWT-OPRCMDE-ELM
下载PDF
导出
摘要 针对复杂运行工况和强背景噪声下风电机组齿轮箱故障特征提取和故障模式识别困难的问题。提出一种经验小波变换(EWT)、最优参数精细复合多尺度散布熵(OPRCMDE)和极限学习机(ELM)相结合的故障诊断方法。首先,利用经验小波变换将原始振动信号分解为若干子模态分量(EWF),通过相关系数选取EWF进行信号重构。其次,提取重构信号的最优参数精细复合多尺度散布熵构成故障特征向量,并通过Relief-F算法对特征向量作进一步筛选,剔除冗余。最后,利用极限学习机进行故障诊断。试验分析结果表明,所提方法能够有效提取区分度明显的风电机组齿轮箱故障特征,实现了齿轮箱故障的准确识别。该研究为风电机组齿轮箱故障诊断研究提供了参考,同时具有一定的实际工程应用价值。 Aiming at the problems of fault extraction and fault mode identification in wind turbine gearbox under complex operating conditions and strong background noise,a fault diagnosis method based on a combination of empirical wavelet transform(EWT),optimal parameter refined compound multi-scale dispersion entropy(OPRCMDE)and extreme learning machines(ELM)is proposed.Firstly,the empirical wavelet transform is used to decompose the original vibration signal into several submodal components(EWF).The EWF is selected by the correlation coefficient to perform signal reconstruction.Secondly,the refined compound multi-scale dispersion entropy of the reconstructed signal is extracted to form the fault feature vector.The feature vector is further filtered by the Relief-F algorithm to eliminate redundancy.Finally,an extreme learning machine is used for fault diagnosis.The experimental results show that the proposed method can effectively extract the fault characteristics with obvious discrimination of the wind turbine gearbox and realize the accurate diagnosis.The research provides a reference for the research on fault diagnosis of wind turbine gearbox,and has a certain practical engineering application value.
作者 李辉 李宣 贾嵘 罗兴琦 白亮 LI Hui;LI Xuan;JIA Rong;LUO Xingqi;BAI Liang(School of Electrical Engineering,Xi’an University of Technology,Xi’an 710048,China;School of Water Resource and Electric Power,Xi’an University of Technology,Xi’an 710048,China)
出处 《自动化仪表》 CAS 2021年第11期12-19,共8页 Process Automation Instrumentation
关键词 风电机组齿轮箱 经验小波变换 信号重构 特征提取 最优参数精细复合多尺度散布熵 Relief-F 极限学习机 故障诊断 Wind turbine gearbox Empirical wavelet transform(EWT) Signal reconstruction Feature extraction Optimal parameters refined compound multi-scale dispersion entropy(OPRCMDE) Relief-F Extreme learning machine(ELM) Fault diagnosis
  • 相关文献

参考文献7

二级参考文献95

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2郭太英,黎发贵.从国外风电发展探讨我国风电发展思路[J].水电勘测设计,2006(2):20-24. 被引量:10
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4贺娇.风能资源详查将推动产业发展[N].中国能源报,2010-02-01(15).
  • 5中国风能协会.2009年中国风电装机容量统计[R].北京:CWEA,2010.
  • 6国际新能源网.财政支持新能源的政策体系趋于完善和多样化[EB/OL].(2009-7-14)[2010-04-1].http:www.in-en.com/newenergy/html/newenergy-141514-1564403796.html.
  • 7李俊峰,高虎,王仲颖,等.2008年中国风电发展报告[R].北京:中国环境科学出版社,2008.
  • 8Caithness Windfarms Information Forum.Summary of wind turbine accident data to 31st March 2010[EB/OL].(2010-03-31)[2010-04-15].http://www.caithnesswindfarms.co.uk/page4.htm.
  • 9RIBRANT J.Reliability performance and maintenance-a survey of failures in wind power systems[D].Sweden:Royal Institute of Technology,2006.
  • 10西班牙EHN公司风电项目开发、运行、维护的经验[EB/OL].(2010-03-31)[2010-04-15].htto://www.windpowerchina.en/node/428.

共引文献352

同被引文献42

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部