期刊文献+

基于随机游走的风险致病基因预测研究进展 被引量:1

Advances in Predicting The Risk Pathogenic Genes With Random Walk
下载PDF
导出
摘要 风险致病基因预测有助于揭示癌症等复杂疾病发生、发展机理,提高现有复杂疾病检测、预防及治疗水平,为药物设计提供靶标.全基因组关联分析(GWAS)和连锁分析等传统方法通常会产生数百种候选致病基因,采用生物实验方法进一步验证这些候选致病基因往往成本高、费时费力,而通过计算方法预测风险致病基因,并对其进行排序,可有效减少候选致病基因数量,帮助生物学家优化实验验证方案.鉴于目前随机游走算法在风险致病基因预测方面的卓越表现,本文从单元分子网络、多重分子网络和异构分子网络出发,对基于随机游走预测风险致病基因研究进展进行较全面的综述分析,讨论其所存在的计算问题,展望未来可能的研究方向. Risk pathogenic genes prediction is important for uncovering the occurrence and development mechanism of complex diseases(i.e.,cancer),improving the disease detection,prevention and treatment,and providing the targets for drug design.Traditional gene-mapping approaches,such as linkage analysis and genomewide association studies(GWAS),often predict hundreds of candidate genes.But it is costly,time-consuming and laborious to further validate these candidate genes with biological experiments.However,the number of candidate pathogenic genes can be effectively reduced by computational and prioritization methods.Considering the excellent performance of random walk with restart(RWR)in predicting the risk pathogenic genes,in this work,we comprehensively discuss the recent progresses of predicting the risk pathogenic genes with RWR from databases related with genes and diseases,the metrics of measuring the similarity between genes/diseases,the strategies of choosing the seed genes of specific disease,and the different genes/diseases network structures.We also point out the computational problems and challenges faced in the process of pathogenic genes prediction.
作者 刘丽丽 张绍武 LIU Li-Li;ZHANG Shao-Wu(Key Laboratory of Information Fusion Technology of Ministry of Education,School of Automation,Northwestern Polytechnical University,Xi′an 710072,China;School of Physics&Information Technology,Shaanxi Normal University,Xi′an 710119,China)
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2021年第10期1184-1195,共12页 Progress In Biochemistry and Biophysics
基金 国家自然科学基金(61873202)资助项目。
关键词 致病基因 随机游走 单元网络 多重网络 异构网络 risk pathogenic genes random walk monoplex network multiplex network heterogeneous network
  • 相关文献

参考文献3

二级参考文献64

  • 1Wood LD, Parsons DW, Jones S, Lin J, Sj6blom T, Leary R J, Shen D, Boca SM, Barber T, Ptak J. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853): 1108-1113.
  • 2Lim J, Hao T, Shaw C, Patel A J, Szab6 G, Rual JF, Fisk C J, Li N, Smolyar A, Hill DE, A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 2006, 125(4): 801-814.
  • 3Van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome. Eur J Hum Genet, 2006, 14(5): 535-542.
  • 4K6hler S, Bauer S, Hom D, Robinson PN. Walking the interactome for pdoritization of candidate disease genes. Am J Hum Genet, 2008, 82(4): 949-958.
  • 5Lage K, Karlberg EO, Sterling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, T[- mer Z, Pociot F, Tommerup N. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol, 2007, 25(3): 309-316.
  • 6Wu X, Liu Q, Jiang R. Align human interactome with phenome to identify causative genes and networks underlying disease families. Bioinformatics, 2009, 25(1): 98-104.
  • 7Li Y, Patra JC. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics, 2010, 26(9): 1219-1224.
  • 8Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi T, Gronborg M. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res, 2003, 13(10): 2363-2371.
  • 9Hamosh A, Scott AF, Amberger JS, Bocchini CA, Mckusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res, 2005, 33(Suppl 1): D514-D517.
  • 10Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol, 2008, 4(1): 189.

共引文献5

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部