期刊文献+

一种面向嵌入式平台的脑电信号注意力检测方法 被引量:4

Attention detection method for EEG signal based on embedded platform
下载PDF
导出
摘要 近年来,基于脑机接口的注意力检测技术在教育和娱乐领域得到了广泛应用。本文针对有限资源计算平台上的注意力检测方法存在检测精度较低的问题,提出了一种适用于嵌入式计算平台的脑电信号注意力检测方法,通过对高精度的优化复杂网络算法进行范式简化和参数优选,显著降低了参数计算所需的时间和训练数据量,并在STM32F407单片机上进行了实现。对6名被试者的在线试验结果表明,相比于嵌入式平台最常用的注意力计量算法,本文提出的方法取得了更高的注意力检测精度,有望提升教育和娱乐领域相关产品的用户体验。 In recent years,attention detection technology based on brain-computer interface has been widely used in education and entertainment fields.Aiming at the problem of low detection accuracy of attention detection methods on limited-resource computing platforms,an EEG signal attention detection method suitable for embedded computing platforms is proposed.Through the paradigm simplification and parameter optimization of the high-precision optimized complex network method,the time required for parameter calculation and the amount of training data are significantly reduced,and it is implemented on the STM32F407 microcontroller.The online test results of 6 subjects show that compared with the most commonly used attention meter method on embedded platforms,the method proposed in this paper has achieved higher attention detection accuracy and is expected to improve the user experience of related products in the entertainment and education field.
作者 刘文政 纪博伦 赵靖 张伟 吴正平 LIU Wenzheng;JI Bolun;ZHAO Jing;ZHANG Wei;WU Zhengping(School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China;College of Innovation and Entrepreneurship,Sanjiang University,Nanjing,Jiangsu 210012,China)
出处 《燕山大学学报》 CAS 北大核心 2021年第6期514-522,共9页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61806174) 河北省自然科学基金资助项目(F2020203070)。
关键词 注意力检测 脑机接口 嵌入式 优化复杂网络算法 范式简化 参数优选 attention detection brain-computer interface embedded optimized complex network method paradigm simplification parameter optimization
  • 相关文献

参考文献5

二级参考文献30

  • 1魏琳,沈模卫,张光强,施壮华.EEG波形伪迹去除方法[J].应用心理学,2004,10(3):47-52. 被引量:9
  • 2伍亚舟,吴宝明,何庆华.基于脑电的脑-机接口系统研究现状[J].中国临床康复,2006,10(1):147-150. 被引量:13
  • 3沈花,李交杰,胡萌,唐孝威,李光.基于单导EEG的高空缺氧所致疲劳的实时检测技术研究[J].传感技术学报,2006,19(4):1042-1044. 被引量:2
  • 4Wolpaw J R,Birbaumer N,McFarland D J,et al.Brain-Computer Interfaces for Communication and Control[J].Clinical Neurophysiology,2002,113(6):767-791.
  • 5Wolpaw J R,Birbaumer N,Heetderks W J,et al.Bra-In-Computer Interface Technology:A Review of the First International Meeting[J].IEEE Transactional on Rehabilitation Engineering,2000,8(2):164-173.
  • 6Wolpaw J R,McFarland D J,Neat G W,et al.An EEG-Based Brain-Computer Interface for Cursor Control[J].Electroenphalography & Clinical Neurophysiogy,1991,78:252-259.
  • 7N Birbaumer.Breaking the Silence:Brain-Computer Interfaces (BCI)for Vommunication and Motor Vontrol.Psychophysiology,2006,43:517-532.
  • 8BCI Competition Data set,http://bbci.de/competittiort/ii/download.
  • 9Pfurtscheller G,Brunner C,Schlogl A,et al.Mu Rhythm(de)Synchronization and EEG Single-Trial Classification of Cifferent Motor Imagery Tasks[J].NeuroImage,2006,31:153-159.
  • 10Naeem M,Brunner C,Leeb R,et al.Seperability of Four-Class Motor Imagery Data Using Independent Component Analysis[J].J Neural Eng,2006,3:208-216.

共引文献39

同被引文献18

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部