期刊文献+

基于改进的K-means入侵检测算法 被引量:4

Intrusion Detection Algorithm Based on Improved K-means
下载PDF
导出
摘要 传统K-means算法应用于入侵检测,存在聚类数目难以估计的缺点,导致入侵检测效果不佳。针对这个问题,提出了一种改进的K-means入侵检测算法。算法根据有效性指标确定最优的聚类数目;依据各维特征对聚类效果的影响进行加权;引入三支决策聚类方法改善聚类效果。在kddcup99数据集的实验结果表明,与传统K-means算法相比,改进后的K-means算法提高了入侵检测的检测率,降低了其误报率。 The traditional K-means algorithm has applied in intrusion detection,but it has the disadvantage that the number of clusters is difficult to estimate,which results in poor intrusion detection effect.To solve this problem,an improved K-means algo⁃rithm is proposed.In this paper,the optimal number of clusters is obtained by the validity index,and considering the different influ⁃ences of each dimension on the clustering,features is weighted.Three-way decision clustering method is introduced to improve the clustering effect.Experimental results on the kddcup99 dataset show that the improved K-means algorithm improves the detection rate of intrusion detection and reduces its false positive rate compared with the traditional one.
作者 季赛花 黄树成 JI Saihua;HUANG Shucheng(School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212003)
出处 《计算机与数字工程》 2021年第11期2184-2188,共5页 Computer & Digital Engineering
基金 国家自然科学基金项目“基于鲁棒表现建模的目标跟踪方法研究”(编号:61772244)资助。
关键词 入侵检测 K-MEANS 有效性指标 特征加权 三支决策 intrusion detection K-means validity index feature weight three-way decision
  • 相关文献

参考文献8

二级参考文献100

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2贺跃,郑建军,朱蕾.一种基于熵的连续属性离散化算法[J].计算机应用,2005,25(3):637-638. 被引量:15
  • 3田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 4陆林花,王波.一种改进的遗传聚类算法[J].计算机工程与应用,2007,43(21):170-172. 被引量:26
  • 5李修亮,苏宏业,褚健.基于在线聚类的多模型软测量建模方法[J].化工学报,2007,58(11):2834-2839. 被引量:28
  • 6KamberM.数据挖掘:概念与技术[M].韩家炜,译.北京:机械工业出版社,2012:338.465.
  • 7ALMEIDA J ,BARB0SA L , PAIS A , et al.Improving hierarchicalcluster analysis : a new method with outlierdetection and automatic clusterint [J] . Chemometrics andIntelligent Laboratory Systems,2007,8 7 (2 ):2 0 8 -2 1 7 .
  • 8LIN Cheng-ru, CHEN M S.Combining partitional and hierarchicalalgorithms for rubust and efficient data clusteringwith cohesionself-merging [J]. IEEE Trans on knowledgeand Data Engineering,2005,1 7 (2) : 145-159.
  • 9MacQUEEN J. Some methods for classification and analysis of multi- variate observations [ C]//Proceedings of the Fifth Berkeley Sympo- sium on Mathematical Statistics and Probability. Berkeley, CA: U- niversity of California Press, 1967:281 -297.
  • 10JAIN A K. Data clustering: 50 years beyond k-means [ J]. Pattern Recognition Letters, 2010, 31(8): 651-666.

共引文献73

同被引文献56

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部