期刊文献+

异常声音检测中模型压缩算法研究 被引量:1

Research on Model Compression in Abnormal Audio Event Detection
下载PDF
导出
摘要 深度学习已经在视觉、语音等领域取得了巨大的成功,随着深度学习性能不断的提升,模型的参数也在不断增加。针对如何在保证模型准确度的同时降低模型大小,使其能够部署在物联网设备上的问题,提出了一种异常声音检测模型与模型压缩算法。异常声音检测模型主要包括端点检测、特征提取、卷积检测模型。针对卷积模型较大的问题,提出了一种模型压缩算法,通过计算节点的输入输出权重之和,裁剪对模型影响较小的节点。实验表明,该异常声音检测模型与压缩算法在保持模型准确度的同时,可以一定程度上降低模型的大小。 Deep learning has achieved great success in visual,voice and other fields.With the continuous improvement of deep learning performance,the parameters of the model are also increasing.Aiming at the problem of how to reduce the size of the model while ensuring the accuracy of the model so that it can be deployed on Internet of things devices,an abnormal sound detec⁃tion model and model compression algorithm are proposed.The abnormal sound detection model mainly includes endpoint detec⁃tion,feature extraction and convolution detection model.In view of the larger problem of convolution model,a model compression al⁃gorithm is proposed.By calculating the sum of input and output weights of nodes,the nodes with less influence on the model are clipped.Experiments show that the model and the compression algorithm can reduce the size of the model to some extent while main⁃taining the accuracy of the model.
作者 冯凯强 潘雨青 李峰 徐小波 FENG Kaiqiang;PAN Yuqing;LI Feng;XU Xiaobo(School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013)
出处 《计算机与数字工程》 2021年第11期2321-2325,共5页 Computer & Digital Engineering
关键词 异常声音 卷积神经网络 模型压缩 物联网 abnormal sound convolutional neural network model compression Internet of things
  • 相关文献

参考文献6

二级参考文献31

  • 1ZAJDEL W,KRIJNDERS J D,ANDRINGA T,et al.CASSANDRA:Audio-video sensor fusion for aggression detection[C]// Proceedings of the 2007 IEEE International Conference on Advanced Video and Signal based Surveillanace.London:IEEE Computer Society,2007:200-205.
  • 2RABAOUI A,DAVY M,ROSSIGNOL S,et al.Using one-class SVMs and wavelets for audio surveillance[J].IEEE Transactions on Information Forensics and Security,2008,3(4):763-775.
  • 3RABAOUI A,LACHIRI Z,ELLOUZE N.Using HMM-based classifier adapted to background noises with improved sounds features for audio surveillance application[J].International Journal of Signal Processing,2008,5(1):46-55.
  • 4RADHAKRISHNAN R,DIVAKARAN A,SMARAGDIS A.Audio analysis for surveillance applications[C]// Proceedings of the 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.Washington,DC:IEEE Computer Society,2005:158-161.
  • 5QIN JIAN-ZHAO,CHENG JUN,WU XIN-YU,et al.A learning based approach to audio surveillance in household environment[J].International Journal of Information Acquisition,2006,3(3):213-219.
  • 6RADHAKRISHNAN R,DIVAKARAN A.Systematic acquisition of audio classes for elevator surveillance[C]// SPIE Image and Video Communications and Processing.San Jose CA:SPIE,2005,5685:64-71.
  • 7WANG JIA-CHING,WANG JHING-FA,WENG YU-SHENG.Chip design of MFCC extraction for speech recognition[J].Integration,2002,32(1/2):111-131.
  • 8Haritaoglu I,Harwood D,Davis L W. Real-t ime Surveillance of People and Their Activities[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,(08):809-830.
  • 9Regunathan R,Divakaran A. Systematic Acquisition of Audio Classes for Elevator Surveillance[EB/OL].http://www.merl.com,2005.
  • 10Clavel C,Ehrette T,Richard G. Events Detection for an Audio-based Surveillance System[A].IEEE Press,2005.

共引文献64

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部