期刊文献+

基于优化离散差分进化算法的压缩感知信号重构 被引量:1

Compressed sensing signal reconstruction based on optimized discrete differential evolution algorithm
原文传递
导出
摘要 针对传统压缩感知重构算法严重依赖稀疏度、重构精准度不高的缺陷,提出了一种基于优化离散差分进化(ODDE)算法,对进化种群进行分析,在实现种群有效聚类的同时提高了种群学习进化的针对性和科学性。重新定义了差分进化粒子的编码方式和进化机制,并将优化后的离散差分进化算法应用于压缩感知重构方法中。将稀疏度未知信号等效为粒子编码,通过种群迭代进化实现了稀疏信号的精确重构。仿真结果表明,与StOMP等传统重构算法相比,本文方法可以显著提高重构精度、降低重构时间。 In order to overcome the shortcomings of traditional compressed sensing reconstruction algorithms, such as heavy dependence on sparseness and low reconstruction accuracy, an Optimized Discrete Differential Evolution(ODDE) algorithm is proposed to analyze the evolutionary population.ODDE can improve the learning and evolution of the population while realizing effective clustering. The differential evolution particle coding method and evolution mechanism are redefined, and the ODDE is applied to the compressed sensing reconstruction method. The sparse unknown signal is equivalent to the particle coding, and the sparse signal is reconstructed accurately through population iterative evolution. The simulation results show that compared with traditional reconstruction algorithms such as StOMP, the reconstruction accuracy of this method is significantly improved and the reconstruction time is reduced.
作者 刘洲洲 张倩昀 马新华 彭寒 LIU Zhou-zhou;ZHANG Qian-yun;MA Xin-hua;PENG Han(School of Computer Science,Xi′an Aeronautical University,Xi′an 710077,China;School of Computer Science,Northwestern Polytechnical University,Xi′an 710072,China;School of Electronic Engineering,Xi′an Aeronautical University,Xi′an 710077,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第6期2246-2252,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 陕西省重点研发计划一般项目(2020GY-084) 陕西省教育厅科研计划项目(20JG014)。
关键词 计算机应用 稀疏度 离散差分 智能进化算法 压缩感知 稀疏重构 computer application sparsity discrete difference intelligent evolutionary algorithms compressed sensing sparse reconstruction
  • 相关文献

参考文献7

二级参考文献77

  • 1方义,熊璋,王剑昆.智能控制中的多Agent系统[J].控制理论与应用,2006,23(5):810-814. 被引量:15
  • 2Bertsekas D.P.,Nonlinear Programming,Athena Scientific,Belmont,1999.
  • 3Bodmann B.G.,Casazza P.G.,Kutyniok G.,A quantitative notion of redundancy for finite frames,Applied and Computational Harmonic Analysis,2011,30(3):348-362.
  • 4Benedetto J.J.,Fickus M.,Finite normalized tight frames,Advances in Computational Mathematics,2003,18(2-4):357-385.
  • 5Bracewell R.N.,The Fourier Transform and Its Applications,McGraw-Hill,Columbu,OH,2000.
  • 6Blanco-Velasco B.V.,Weng M.B.,Barner K.E.,Ecg signal denoising and baseline wander correction based on the empirical mode decomposition,Computers in Biology and Medicine,2008,38(1):1-13.
  • 7Chen Q.,Riemenschneider N.,Xu Y.,A B-spline approach for empirical mode decompositions,Advances in Computational Mathematics,2006,24(1):171-195.
  • 8Cai J.F.,Osher S.,Shen Z.,Split Bregman methods and frame based image restoration,Multiscale Modeling and Simulation,2009,8(2):337-369.
  • 9Combettes P.L.,Pesquet J.C,Primal-dual splitting algorithm for solving inclusions with mixtures of composite,Lipschitzian,and Parallel-sum type monotone operators,Set-Valued Var.Anal.,2012,20(2):307-330.
  • 10Candes E.J.,Romberg J.K.,Tao T.,Stable signal recovery from incomplete and inaccurate measurements,Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.

共引文献52

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部