期刊文献+

基于超宽带雷达的人体动作识别技术研究 被引量:1

Research on Human Motion Recognition Technology Based on UWB Radar
下载PDF
导出
摘要 论文就基于超宽带雷达的人体动作识别技术研究这一课题,从实验数据采集、回波信号处理、特征参数提取、机器学习分类四个方面展开了研究工作,针对四种仅凭时频结果较难区分的动作,提出了一种多域峰值点跟踪算法,使用该算法可以对动作的时间、频率、距离特征进行分析;根据定义的特征参数对特征分析结果进行特征提取,构造人体动作特征数据集,最后使用机器学习分类算法对人体动作进行识别,测试样本识别结果验证了该分类算法的有效性。 In this paper,the human motion recognition technology based on UWB radar is studied from four aspects:experi⁃mental data collection,echo signal processing,feature parameter extraction and machine learning classification.A multi-domain peak point tracking algorithm is proposed for four kinds of actions which are difficult to be distinguished based on time-frequency re⁃sults alone.According to the defined characteristic parameters,the feature analysis results are extracted and the human motion fea⁃ture data set is constructed.The results show that the recognition accuracy of the SVM algorithm is high,and the recognition results of test samples verify the effectiveness of the classification algorithm.
作者 苗仲菁 马帅帅 单涛 MIAO Zhongjing;MA Shuaishuai;SHAN Tao(Aerospace Science and Industry Defense Technology Research Testing Center,Beijing 100854;Beijing Institute of Technology,Beijing 100081)
出处 《舰船电子工程》 2021年第11期92-95,117,共5页 Ship Electronic Engineering
关键词 人体动作识别 超宽带雷达 多域峰值点跟踪 机器学习分类 human motion recognition UWB radar multi-domain peak point tracking machine learning classification
  • 相关文献

参考文献2

二级参考文献19

  • 1BEBAR A A and HEMAYED E E. Comparative study for feature detector in human activity recognition[C]. IEEE the9th International conference on Computer Engineering Conference, Giza, 2013: 19-24. doi: 10.1109/ICENCO.2013. 6736470.
  • 2LI F and DU J X. Local spatio-temporal interest point detection for human action recognition[C]. IEEE the 5th International Conference on Advanced Computational Intelligence, Nanjing, 2012: 579-582. doi: 10.1109/ICACI. 2012.6463231.
  • 3ONOFRI L, SODA P, and IANNELLO G. Multiple subsequence combination in human action recognition[J]. IEEE Journal on Computer Vision, 2014, 8(1): 26-34. doi: 10.1049/iet-cvi.2013.0015.
  • 4FOGGIA P, PERCANNELLA G, SAGGESE A, et al. Recognizing human actions by a bag of visual words[C]. IEEE International Conference on Systems, Man, and Cybernetics~ Manchester, 2013: 2910-2915. doi: 10.1109/SMC.2013.496.
  • 5ZHANG X, MIAO Z J, and WAN L. Human action categories using motion descriptors[C]. IEEE 19th International Conference on hnage Processing, Orlando, FL, 2012: 1381-1384. doi: 10.1109/ICIP.2012.6467126.
  • 6LI Y and KUAI Y H. Action recognition based on spatio-temporal interest point[C]. IEEE the 5th International.
  • 7Conference on Biomedical Engineering and Informatics, Chongqing, 2012: 181-185. doi: 10.1109/BMEI.2012.6512972.
  • 8REN H and MOSELUND T B. Action recognition using salient neighboring histograms[C]. IEEE the 20th International Conference on Image Processing, Melbourne, VIC, 2013: 2807-2811. doi: 10.1109/ICIP.2013.6738578.
  • 9COZAR J R, GONZALEZ-LINARES J M, GUIL N, et al. Visual words selection for human action classification[C]. International Conference on High Performance Computing and Simulation, Madrid, 2012: 188-194. doi: 10.1109/ HPCSim.2012.6266910.
  • 10WANG H R, YUAN C F, HU W M, et al. Action recognition using nonnegative action component representation and sparse basis selection[J]. IEEE Transactions on Image Processing, 2014, 23(2): 570-581. doi: 10.1109/TIP.2013. 2292550.

共引文献11

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部