期刊文献+

复合材料基体裂纹光纤光栅非线性超声Lamb波检测试验研究 被引量:2

Evaluation of Composite Matrix Crack Using Nonlinear Ultrasonic Lamb Wave Detected by Fiber Bragg Grating
下载PDF
导出
摘要 针对复合材料基体裂纹引起的超声非线性问题,研究了一种具有比例–积分–微分反馈控制的高灵敏度、大带宽相移光纤光栅超声检测系统。利用相移光栅系统检测在复合材料中传播的超声Lamb波信号,对Lamb波进行数据处理,分离出了频率为2.0MHz的二次谐波成分。结果表明,随着裂纹个数的增加,相对非线性参数线性增长,且相比压电传感器检测结果,相移光栅检测的相对非线性参数具有更高的增长速率。提出的相移光纤光栅传感系统可应用于复合材料的基体裂纹损伤评估,且具有很高的可靠性。 A high-sensitive and broad-bandwidth phase-shifted fiber Bragg grating based ultrasonic detection system with proportional-integral-derivative feedback controller was proposed to evaluate the ultrasonic nonlinearity induced by the matrix crack in carbon fiber reinforced plastic.After the optical fiber sensing system detected the ultrasonic Lamb wave propagating in a composite laminate,the second harmonic components with a frequency of 2.0MHz was extracted from Lamb wave signals by data processing.The result show that the relative nonlinear parameter grew linearly with the increase of crack numbers.In comparison with conventional lead zirconate titanate sensor,the relative nonlinear parameter detected by the phase-shifted fiber Bragg grating sensor shows a higher growth rate.Thus,the proposed fiber optic-ultrasonic detection system with high reliability can be applied to the evaluation of matrix cracks damage of composite materials.
作者 王容 吴奇 熊克 张含琦 WANG Rong;WU Qi;XIONG Ke;ZHANG Hanqi(Nanjing Vocational University of Industry Technology,Nanjing 210023,China;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《航空制造技术》 CSCD 北大核心 2021年第21期51-56,共6页 Aeronautical Manufacturing Technology
基金 国家自然科学基金(11972016) 机械结构力学与控制国家重点实验室课题(MCMS-I-0521G04,MCMS-E-0519K01)。
关键词 相移光纤光栅 碳纤维增强复合材料 非线性超声 LAMB波 基体裂纹 Phase-shifted fiber Bragg grating(PSFBG) Carbon fiber reinforced plastic(CFRP) Nonlinear ultrasonic Lamb wave Matrix crack
  • 相关文献

参考文献1

二级参考文献12

  • 1JIANG Ming-shun, MENG Ling, SUI Qing-mei, PENG Peng and ZHAO Zeng-yu, Journal of Optoelectronics·Laser 22, 1207 (2011). (in Chinese).
  • 2GUYi-ying, LI Shan-feng, LI Xin, LUO Xin, HANXiu-you and ZHAO Ming-shan, Journal of Optoelectronics·Laser 21, 376 (2010). (in Chinese).
  • 3I. Perez, H. L. Cui and E. Udd, Acoustic Emission Detection Using Fiber Bragg Gratings, SPIE 4328, 209 (2001).
  • 4N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hang, L. Zhang and I. Bennion, Electron. Lett. 34, 1139 (1998).
  • 5A. Minardo, A. Cusano, R. Bernini, L. Zeni and M. Giordano, IEEE Transactions on Ultrasonics, Freeoelectrics, and Frequency Control 52, 304 (2005).
  • 6Jung-Ryul Lee and Hiroshi Tsuda, Scripta Materialia 53, 1181 (2005).
  • 7Graham Wild and Steven Hinckley, IEEE Sensors Journal 8, 1184 (2008).
  • 8Chien-Ching Ma and Cheng-Wei Wang, IEEE Sensors Journal 9, 1998 (2009).
  • 9C. Boulet, D. J. Webb, M. Douay and P. Niay, IEEE Photonics Technology Lett. 13, 1215 (2001).
  • 10Hiroshi Tsuda, Composites Science and Technology 66, 676 (2006).

共引文献11

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部