期刊文献+

基于CNN-LSTM的风电机组异常状态检测 被引量:24

Abnormal state detection of wind turbines based on CNN-LSTM
下载PDF
导出
摘要 风电机组的环境恶劣和工况多变导致风电机组故障频发,为了保障风电机组的可靠运行,基于数据的机组异常状态检测尤为重要。该研究提出一种基于级联深度学习预测模型的风电机组状态检测方法,首先对风电场数据采集与监视控制(supervisory control and data acquisition,SCADA)系统的数据进行预处理,并通过距离相关系数(distance correlation coefficient,DCC)分析选取输入参数;然后结合卷积神经网络(convolution neural network,CNN)和长短期神经网络(long short-term memory,LSTM)建立观测参数与目标参数之间的逻辑关系,通过均方根误差(root mean square error,RMSE)和样本熵(sample entropy,SE)对齿轮箱轴承温度预测残差进行分析,监测齿轮箱轴承温度异常变化;最后以华北某风场的SCADA数据进行算例验证,结果表明该方法能够准确检测到齿轮箱轴承温度异常,提前发现风电机组的早期故障,为风电机组安全可靠运行提供重要价值。 The bad operating environment of wind turbines leads to frequent gearbox failures.Therefore,it is particularly important to improve the reliability of wind turbines.In view of this,a wind turbine abnormal state detection method was proposed based on a deep learning prediction model and sample entropy(SE).Firstly,the wind field data acquired by the supervisory control and data acquisition(SCADA)system were preprocessed,and input parameters were selected by virtue of a distance correlation coefficient(DCC)analysis.Then,the convolution neural network(CNN)and the long and short term neural network(LSTM)were combinedly used to establish the logical relationship between the observation parameters and the target parameters.By making use of the root mean square error(RMSE)and sample entropy,the residual temperature of the gear box bearing was predicted and analysed to monitor the abnormal temperature change of the gear box bearing.Finally,the SCADA data of a wind field in north China was used for example verification.The results show that the method can accurately detect the temperature anomaly of the gearbox bearing and find the early faults of the wind turbine in advance,providing reference information to farm staffs for the maintenance of the wind turbine.
作者 向玲 王朋鹤 李京蓄 XIANG Ling;WANG Penghe;LI Jingxu(Department of Mechanical Engineering,North China Electric Power University,Baoding 071003,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第22期11-17,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(51675178)。
关键词 风电机组 数据采集与监视控制(SCADA) 深度学习 样本熵(SE) 状态检测 wind turbine supervisory control and data acquisition(SCADA) deep learning sample entropy(SE) anomaly detection
  • 相关文献

参考文献10

二级参考文献85

  • 1郭太英,黎发贵.从国外风电发展探讨我国风电发展思路[J].水电勘测设计,2006(2):20-24. 被引量:10
  • 2唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 3贺娇.风能资源详查将推动产业发展[N].中国能源报,2010-02-01(15).
  • 4中国风能协会.2009年中国风电装机容量统计[R].北京:CWEA,2010.
  • 5国际新能源网.财政支持新能源的政策体系趋于完善和多样化[EB/OL].(2009-7-14)[2010-04-1].http:www.in-en.com/newenergy/html/newenergy-141514-1564403796.html.
  • 6李俊峰,高虎,王仲颖,等.2008年中国风电发展报告[R].北京:中国环境科学出版社,2008.
  • 7Caithness Windfarms Information Forum.Summary of wind turbine accident data to 31st March 2010[EB/OL].(2010-03-31)[2010-04-15].http://www.caithnesswindfarms.co.uk/page4.htm.
  • 8RIBRANT J.Reliability performance and maintenance-a survey of failures in wind power systems[D].Sweden:Royal Institute of Technology,2006.
  • 9西班牙EHN公司风电项目开发、运行、维护的经验[EB/OL].(2010-03-31)[2010-04-15].htto://www.windpowerchina.en/node/428.
  • 10HAMEED Z,HONG Y S,CHOY M,et al.Condition monitoring and fault detection of wind turbines and related,algorithms:A review[J].Renewable and Sustainable Energy Reviews,2009(13):1-39.

共引文献514

同被引文献286

引证文献24

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部