期刊文献+

基于LDA主题模型的公众新冠疫苗接种意愿情感分析 被引量:2

Emotional Analysis on Public’s Willingness of COVID-19 Vaccination Based on LDA Topic Model
下载PDF
导出
摘要 当前全球疫情持续蔓延,周边国家疫情形势严峻,我国防范疫情输入压力不断加大,研究公众对新冠疫苗接种的关注点和情感倾向,对于采取有效措施提高新冠疫苗接种率和加快建立免疫屏障具有重要意义。基于综合性问答社区的回答文本,利用SnowNLP情感分析工具对情感值进行了计算,并将所有回答文本分类为积极和消极,再利用LDA主题模型分别挖掘了不同情感倾向用户回答的潜在主题,并确定了主题关键词,然后分别分析了不同情感倾向公众的关注点并提出了解决措施,指出大部分公众对新冠疫苗接种持积极态度,部分公众(占总样本的27.6%)对此持消极态度,且关注点在疫苗接种的必要性及疫苗的有效性、安全性等。 As the global epidemic continues to spread and the situation in neighboring countries is grim,China is under increasing pressure to prevent imported cases.The research on public’s concerns and emotional orientation towards COVID-19 vaccination is of great significance for effective measures to improve the vaccination rate and speed up the establishment of immune barriers.Based on the answering texts of comprehensive Q&A communities,this paper calculates the emotion value by using SnowNLP emotional analysis tool and categorizes all answering texts as the positive and the negative,and mines the potential topics answered by users with different emotional tendencies by using LDA topic model and determines the topic keywords,and then analyzes the concerns of the public with different emotional tendencies and propose solutions respectively,and points out that the most people have positive attitudes toward the COVID-19 vaccination,and some members of the public(27.6%of the total sample)have a negative attitude towards it,and the text of the responses of the public with negative attitudes was mined,and they focus on the need for vaccination and the effectiveness and safety of vaccines,etc.
作者 王姣 郭玉琦 申锟 WANG Jiao;GUO Yuqi;SHEN Kun
出处 《图书情报导刊》 2021年第10期52-58,共7页 Journal of Library and Information Science
关键词 新冠疫苗 接种意愿 情感分析 LDA主题模型 COVID-19 vaccination vaccination willingness emotional analysis LDA topic model
  • 相关文献

参考文献2

二级参考文献76

  • 1Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 1990.
  • 2Hofmann T. Probabilistic latent semantic indexing//Proceedings of the 22nd Annual International SIGIR Conference. New York: ACM Press, 1999:50-57.
  • 3Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 4Griffiths T L, Steyvers M. Finding scientific topics//Proceedings of the National Academy of Sciences, 2004, 101: 5228 5235.
  • 5Steyvers M, Gritfiths T. Probabilistic topic models. Latent Semantic Analysis= A Road to Meaning. Laurence Erlbaum, 2006.
  • 6Teh Y W, Jordan M I, Beal M J, Blei D M. Hierarchical dirichlet processes. Technical Report 653. UC Berkeley Statistics, 2004.
  • 7Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, B39(1): 1-38.
  • 8Bishop C M. Pattern Recognition and Machine Learning. New York, USA: Springer, 2006.
  • 9Roweis S. EM algorithms for PCA and SPCA//Advances in Neural Information Processing Systems. Cambridge, MA, USA: The MIT Press, 1998, 10.
  • 10Hofmann T. Probabilistic latent semantic analysis//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden, 1999:289- 296.

共引文献254

同被引文献47

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部