期刊文献+

多角色优化策略的灰狼-共生生物搜索算法 被引量:4

Multi Role Optimization Strategic Grey Wolf Optimizer-symbiotic Organisms Search Algorithm
下载PDF
导出
摘要 针对共生生物搜索算法存在的易陷入局部最优及搜索停滞等缺陷,提出一种基于多角色优化策略的混合灰狼-共生生物搜索算法(MRSSOS).从算法内部结构、停止防止机制、混合智能优化算法三个方面对标准SOS算法进行改进,减少无效搜索的同时保持种群多样性,进一步平衡算法迭代过程中的探索能力与挖掘能力.实验测试结果表明,改进后的MRSSOS算法性能明显更好,选取的10个单峰函数中,9个都可在1000次迭代内收敛到理论最优解,9个多峰函数中,5个可达最优解,另外2个解优于对比算法,表明MRSSOS在收敛速度、求解精度、稳定性方面性能优势明显. Aiming at the defects of symbiotic biology search algorithm,such as easy to fall into local optimization and search stagnation,a hybrid gray wolf symbiotic biology search algorithm(mrssos)based on multi role optimization strategy is proposed.This paper improves the standard SOS algorithm from three aspects:the internal structure of the algorithm,the stop prevention mechanism and the hybrid intelligent optimization algorithm,so as to reduce the invalid search while maintaining the diversity of the population,and further balance the exploration ability and mining ability in the iterative process of the algorithm.The experimental results show that the performance of the improved mrssos algorithm is obviously better.Nine of the 10 unimodal functions selected can converge to the theoretical optimal solution in 1000 iterations.Among the nine multimodal functions,five can reach the optimal solution,and the other two solutions are better than the comparative algorithm.It shows that mrssos has obvious performance advantages in global search ability,convergence speed,solution accuracy and robustness.
作者 敖山 彭雄飞 刘志中 AO Shan;PENG Xiong-fei;LIU Zhi-zhong(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454003,China;Peking University Institute of Educational Economics,Beijing 100871,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第11期2276-2283,共8页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61872126)资助 全国教育科学规划教育部重点课题项目(DFA170292)资助 河南省软科学研究计划项目(182400410147)资助.
关键词 共生生物搜索 多角色优化 精英机制 灰狼算法 自适应搜索 symbiotic organisms search multi role optimization elite mechanism grey wolf optimizer adaptive search
  • 相关文献

参考文献13

二级参考文献165

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:71
  • 4[11]Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ A ].Proc. Congress on Evolutionary Computation[ C ]. Seonl, Korea. Piscataway, NJ: IEEE Service Center,27 - 30 May 2001.1.101 - 106.
  • 5[12]Jacques Riget,Jakob S Vesterstrom. A diversity-guided particle swarm optimization-the ARPSO [ DB/OL ]. http://citeseer. nj. nec. com/riget02diversityguided. html.
  • 6[13]Lovbjerg M, Krink T. Extending particle swarms with self-organized criticality[ A ]. Proceedings of the Fourth Congress on evolutionary computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2. 1588 -1593.
  • 7[14]Al-kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 12 - 17 May 2002.1.489 - 494.
  • 8[15]Krink T, Vesterstrom J S, Riget J. Particle swarm optimisation with spatial particle extension[ A]. Proceedings of the Fourth Congress on Evolutionary Computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2.1474- 1479.
  • 9[16]Kennedy J, Mendes R. Population structure and particle swarm performance[ A]. Proceedings of the IEEE Congress on Evolutionary Computation ( CEC 2002 ) [ C ]. Honolulu, HI USA, 12 - 17 May 2002.2.1671- 1676.
  • 10[17]M Lvbjerg, T K Rasmussen, T Krink. Hybrid particle swarm optimiser with breeding and subpopulations[ A ]. Proceedings of the Genetic and Evolutionary Computation Conference [ C ]. San Francisco, California,2001.469 - 476.

共引文献177

同被引文献47

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部