期刊文献+

事件相关电位(P300)脑电信号解码的两个问题及其解决方法

Two Problems in Decoding Event-related Potential(P300)EEG Signals and Their Solutions
下载PDF
导出
摘要 为提高脑机接口系统中目标分类准确率并保证一定的信息传输速率,本文首先建立了多尺度卷积神经网络模型,然后建立一个通道选择算法,给出针对每个被试的、更有利于分类的通道组合.最后利用第十七届中国研究生数学建模竞赛C题公开数据训练得到面向受试者的P300识别的特定模型.实验结果表明:筛选出特定5位被试者的最优通道,识别平均准确率最高可达72%,平均信息传输速率最高可达35.7bits/min,取得了较好的效果. In order to improve the accuracy of target classification and ensure a certain rate of information transmission in the brain computer interface system,a multi-scale convolutional neural network model is set up,and then a channel selection algorithm is established to give a channel combination that is more conducive to classification for each subject.Finally,a specific model of tested-oriented P300 recognition is obtained by using the open data of Question C in the 17th China Graduate Mathematical Contest in Modeling.The experimental results show that the average recognition accuracy rate of the optimal channel selected for the specific 5 subjects is up to 72%,and the average information transmission rate is up to 35.7bits/min.
作者 张鸿飞 殷浩钧 于银虎 许林峰 岳洪伟 王洪涛 ZHANG Hong-fei;YIN Hao-jun;YU Yin-hu;XU Lin-feng;YUE Hong-wei;WANG Hong-tao(Intelligent Manufacturing Department,Wu Yi University,Jiangmen 5029020,China)
出处 《五邑大学学报(自然科学版)》 CAS 2021年第4期38-44,共7页 Journal of Wuyi University(Natural Science Edition)
基金 广东省教育厅-重点领域专项项目(2020ZDZX3018) 广东省科技专项(大专项)(2020182) 五邑大学-港澳联合研发资助项目(2019WGALH16) 广东省研究生教育创新计划项目(2020JGXM111) 五邑大学本科教学质量与教学改革工程项目(JX2019055)。
关键词 脑机接口 多尺度卷积神经网络 通道选择算法 Brain computer interfaces Multiscale convolutional neural networks Channel selection algorithms
  • 相关文献

参考文献4

二级参考文献19

  • 1杨帮华,颜国正,丁国清,于莲芝.脑机接口关键技术研究[J].北京生物医学工程,2005,24(4):308-310. 被引量:21
  • 2JONATHAN R. WOLPAW, NIELS B. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002, 7(2): 767 - 791.
  • 3LEVINE S P, HUGGINS J E, BEMENT S L, et al. A direct brain interface based on event related potentials [J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 180 - 185.
  • 4SUTTON S, BRAREN M, ZUBIN J, et al. Information delivery and the sensory evoked potential [J]. Science, 1965, 155(3768): 1436 - 1439.
  • 5FARWELL L A, DONCHIN E. Talking off the top of your head: to- ward a mental prosthesis utilizing event-related brain potentials [J]. Electroencephalography and Clinical Neurophysiology, 1988, 70(6): 510-513.
  • 6SCHALK G, MCFARLAND D J. BCI2000: development of a gen- eral purpose brain-computer interface (BCI) system [J]. IEEE Trans- actions on Bio-medical Engineers, 2004, 51(6): 1034 - 1043.
  • 7CHEN Q. Design and experiment research of tv remote control sys- tem bsaed brain-computer interface syetem [D]. Tianjin: University of Tianjin, 2005.
  • 8LI Y Q, LONG J Y, YU T Y, et al. An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential [J]. IEEE Transactions on Bio-medical Engineers, 2010, 57(10): 249 - 2505.
  • 9WOLPAW J, BIRBAUMER N, HEETDERKS W, et al. Brain- computer interface technology: a review of the first international meeting [J]. IEEE Transactions on Rehabil Engineering, 2000, 8(2): 164 - 173.
  • 10HOFFMANN U, VESIN J, EBRAHIMI T, et al. An efficient P300- based brain-computer interface for disabled subjects [C] //Proceed- ings of IEEE International Symposium on Intelligent Control. New York: IEEE, 1994, 8:129 - 134.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部