摘要
为提高脑机接口系统中目标分类准确率并保证一定的信息传输速率,本文首先建立了多尺度卷积神经网络模型,然后建立一个通道选择算法,给出针对每个被试的、更有利于分类的通道组合.最后利用第十七届中国研究生数学建模竞赛C题公开数据训练得到面向受试者的P300识别的特定模型.实验结果表明:筛选出特定5位被试者的最优通道,识别平均准确率最高可达72%,平均信息传输速率最高可达35.7bits/min,取得了较好的效果.
In order to improve the accuracy of target classification and ensure a certain rate of information transmission in the brain computer interface system,a multi-scale convolutional neural network model is set up,and then a channel selection algorithm is established to give a channel combination that is more conducive to classification for each subject.Finally,a specific model of tested-oriented P300 recognition is obtained by using the open data of Question C in the 17th China Graduate Mathematical Contest in Modeling.The experimental results show that the average recognition accuracy rate of the optimal channel selected for the specific 5 subjects is up to 72%,and the average information transmission rate is up to 35.7bits/min.
作者
张鸿飞
殷浩钧
于银虎
许林峰
岳洪伟
王洪涛
ZHANG Hong-fei;YIN Hao-jun;YU Yin-hu;XU Lin-feng;YUE Hong-wei;WANG Hong-tao(Intelligent Manufacturing Department,Wu Yi University,Jiangmen 5029020,China)
出处
《五邑大学学报(自然科学版)》
CAS
2021年第4期38-44,共7页
Journal of Wuyi University(Natural Science Edition)
基金
广东省教育厅-重点领域专项项目(2020ZDZX3018)
广东省科技专项(大专项)(2020182)
五邑大学-港澳联合研发资助项目(2019WGALH16)
广东省研究生教育创新计划项目(2020JGXM111)
五邑大学本科教学质量与教学改革工程项目(JX2019055)。
关键词
脑机接口
多尺度卷积神经网络
通道选择算法
Brain computer interfaces
Multiscale convolutional neural networks
Channel selection algorithms