期刊文献+

面向非遗文本的知识组织模式及人文图谱构建研究 被引量:16

Research on Intangible Cultural Heritage Text-Oriented Knowledge Organization Model and Humanistic Atlas Construction
原文传递
导出
摘要 [目的/意义]目前,非物质文化遗产领域内细粒度的人文性知识(情感、观念、思维、风格等)广泛散布在多源异构的非结构化文本中,尚未得到有效组织,如何设计一套由大规模非遗文本向人文性知识自动转化的模式,对于人文知识图谱的构建及其应用具有重要指导作用。[方法/过程]本文面向非遗非结构化文本探索领域知识组织模式,重点结合知识图谱在文本语义关联解析与数据语义链接层面的技术特质,一方面引入自然语言处理技术对非遗文本内人文性知识进行语义关联解析,另一方面在语义融合的基础上推动数据的语义链接与知识服务。随后,以联合国非遗名录中的"古琴艺术"为案例进行实现路径分析,包括:元数据特征解析与人文本体语义建模、"冷启动"下融入汉字语言特征的文本语义关联解析、语义融合下多源知识的语义链接、基于语义知识图谱的非遗人文知识服务。[结果/结论]本文提出了非遗非结构化文本到结构化知识至开放共享知识库的一整套知识组织模式与自动化实现路径,语义技术的有效利用细化了领域知识的粒度,知识的语义描述与链接提升了数据关联的范畴,进而为更深层次的非遗人文知识服务打下基础。 [Purpose/significance]At present,the fine-grained humanistic knowledge(emotions,concepts,thinking,styles,etc.)in the field of intangible cultural heritage is widely scattered in unstructured texts of multiple sources,and has not been effectively organized.How to design a model for automatic transformation from large-scale intangible heritage texts to humanistic knowledge is an important guide for the construction of humanistic knowledge graphand its application.[Method/process]In this paper,we explore the domain knowledge organization model for unstructured ICH texts,focusing on the technical characteristics of knowledge graphs in semantic association parsing of texts and semantic data linking,introducing natural language processing techniques for semantic association parsing of humanistic knowledge in ICH texts,and promoting semantic data linking and knowledge services based on semantic fusion.A technical path is demonstrated by taking"Guqin Art"in the ICH list of the United Nations as an example,including:metadata feature analysis and humanistic ontology modeling,semantic association parsing of text incorporating linguistic features of Chinese characters under"cold start",multi-source knowledge link under semantic fusion,and deduction and knowledge discovery basing knowledge ontology.[Result/conclusion]We aim at constructing a complete set of knowledge organization model and automated realization path from unstructured text to structured knowledge and open shared knowledge base.The effective use of semantic technology refines the granularity of domain knowledge,and the semantic description and association of knowledge enhance the scope of data linking,thus laying the foundation for deeper ICH humanistic knowledge services.
作者 张卫 王昊 李跃艳 邓三鸿 Zhang Wei;Wang Hao;Li Yueyan;Deng Sanhong(School of Information Management of Nanjing University,Jiangsu,210023;Jiangsu Key Laboratory of Data Engineering and Knowledge Service,Nanjing University,Nanjing,210023)
出处 《情报资料工作》 CSSCI 北大核心 2021年第6期91-101,共11页 Information and Documentation Services
基金 国家社科基金重点项目“大数据环境下领域知识加工与组织模式研究”(项目编号:20ATQ006) 江苏省研究生科研创新计划“面向心理健康的医学文本语义解析与知识图谱构建研究”(项目编号:KYCX21_0026) 中央高校基本科研项目“面向人文计算的方志文本的语义分析和知识图谱研究”(项目编号:010814370113)的研究成果 江苏青年社科英才和南京大学仲英青年学者等人才培养计划的支持。
关键词 非物质文化遗产 知识组织 语义知识图谱 人文性知识 自然语言处理 intangible cultural heritage knowledge organization semantic knowledge graph humanistic knowledgenatural language processing
  • 相关文献

参考文献7

二级参考文献79

  • 1程齐凯,周耀林,戴旸.论基于本体的非物质文化遗产分类组织方法[J].信息资源管理学报,2011,1(3):78-83. 被引量:15
  • 2蔡丰明.中国非物质文化遗产的文化特征及其当代价值[J].上海交通大学学报(哲学社会科学版),2006,14(4):64-69. 被引量:60
  • 3王巨山.非物质文化遗产的特征及其保护的再认识[J].社会科学辑刊,2006(5):165-167. 被引量:26
  • 4AGICHTEIN E, GRAVANO L. Snowball: extracting relations from large plain-text collections [ C]. ACM DL 2000: 85-94.
  • 5AGICHTEIN E. Confidence estimation methods for partially supervised relation extraction [ C ]. SDM 2006.
  • 6CULOTTA A, MCCALLUM A. Confidence estimation for information extraction [ C ] // Proceedings of Human Language Technology Conference and North American Chapter of the Association for Computational Linguistics ( HLT-NAACL), 2004.
  • 7GANDRABUR S, FOSTER G. Confidence estimation for text prediction [ C ] //Proceedings of the Conference on Natural Language Learning (CoNLL) 2003.
  • 8DOWNEY D, ETZIONI O, SODERLAND S. A probabilistic model of redundancy in information extraction [ C ] //Proceedings of the 19th International Joint Conference on Artificial Intelligence ( IJCAI), 2005.
  • 9HASEGAWA T, SEKINE S, GRISHMAN R. Discovering relations among named entities from large corpora [ C ] //Proceedings of the Annual Meeting of Association of Computational Linguistics (ACL), 2004.
  • 10RILOFF E. Automatically generating extraction patterns from untagged text [ C ] // Proceedings of the Thirteenth National Conference on Artificial Intelligence, 1996.

共引文献231

同被引文献226

引证文献16

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部