期刊文献+

离散制造智能工厂场景的AGV路径规划方法 被引量:4

An AGV Path Planning Method for Discrete Manufacturing Smart Factory
下载PDF
导出
摘要 自动导引车(Automated Guided Vehicle,AGV)的自主路径规划是离散制造智能工厂中物流系统的重要组成部分,AGV可以大大提高离散智能制造的智能化和自动化能力,而传统的AGV导航方式自由度较低。本文研究面向离散制造智能工厂场景下的AGV自主路径规划问题,应用深度强化学习方法提高自主路径规划的自由度。设计了一种多模态环境信息感知的神经网络结构,并将AGV在全局障碍下的路径规划预训练策略引入到复杂的离散制造智能工厂场景下的路径规划,实现了AGV从环境感知到动作决策的端到端路径规划。实验结果表明,采用本文提出算法的AGV能够在复杂的离散制造智能工厂环境进行自主规划路径,并具有较高的成功率和避障能力。 Automated guided vehicle(AGV)autonomous path planning is an important part of the logistics system in discrete manufacturing smart factories.AGV can greatly improve the intelligence and automation capabilities of discrete smart manufacturing.The traditional AGV navigation method has a low degree of freedom.The autonomous path planning of AGV is studied under the scenario of discrete manufacturing smart factories,and deep reinforcement learning methods applied to improve the freedom of autonomous path planning.A neural network structure for multi-modal environmental information perception is designed,and the path planning policy of AGV under global obstacles introduced to the path planning in the complex discrete manufacturing smart factory scenario,thereby realizing the AGVs end-to-end path planning from environmental perception to action for decision making.The experimental results show that AGV can independently plan paths in the complex and unknown intelligent logistics system environment of discrete manufacturing smart factories,and has a high success rate and obstacle avoidance ability.
作者 郭心德 丁宏强 Guo Xin-de;Chris Hong-qiang Ding(School of Automation,Guangdong University of Technology,Guangzhou 510006,China;Key Laboratory of Intelligent Information Processing and System Integration of IoT,Ministry of Education,Guangzhou 510006,China;The Chinese University of Hong Kong,Shenzhen 518172,China)
出处 《广东工业大学学报》 CAS 2021年第6期70-76,共7页 Journal of Guangdong University of Technology
基金 国家重点研发计划项目(2020AAA0108304) 国家自然科学基金资助项目(62073088,U1911401,U1701261) 广东省基础与应用基础研究基金资助项目(2019A1515011606)。
关键词 自动导引车(AGV) 路径规划 深度强化学习 神经网络结构 automated guided vehicle(AGV) path planning deep reinforcement learning neural network structure
  • 相关文献

参考文献8

二级参考文献57

  • 1冯琦,周德云.基于微分进化算法的时间最优路径规划[J].计算机工程与应用,2005,41(12):74-75. 被引量:31
  • 2TAN Guan-Zheng,HE Huan,SLOMAN Aaron.Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots[J].自动化学报,2007,33(3):279-285. 被引量:26
  • 3郝宗波,洪炳镕,黄庆成.基于栅格地图的机器人覆盖路径规划研究[J].计算机应用研究,2007,24(10):56-58. 被引量:27
  • 4GUAN H K,CHI Y C,CHEN J W. Design and implementationof a remote monitoring cleaning robot[C] / / AutomaticControl Conference, 2014 CACS International. Kaohsiung:IEEE ,2014:281-286.
  • 5STRIMEL G P ,V E L 0 S 0 M M. Coverage planning with finiteresources [C] //2014 IEEE/RSJ International Conferenceon Intelligent Robots and Systems. Chicago, Illinois :IEEE ,2014:2950-2956.
  • 6WANG Z M , BO Z. Coverage path planning for mobile robotbased on genetic algorithm[C] //2014 IEEE Workshop onElectronics, Computer and Applications. Ottawa, Ontario:IE E E ,2014:732-735.
  • 7HASSANZADEH I,M ADANI K, BADAMCHIZADEH MA. Mobile robot path planning based on shuffled frog lea ping optimization algorithm [C]//2 0 1 0 IEEE Conferenceon Automation Science and Engineering. Toronto, Ontario :IE E E ,2010:680-685.
  • 8HASAN K M,REZA K J. Path planning algorithm developmentfor autonomous vacuum cleaner robots [C] //2 0 1 4 InternationalConference on Informatics, Electronics&Vision.Dhaka: IEEE,201 4: 1-6.
  • 9Thrun S. Probabilistic Robotics [M] . U SA: MIT Press,2 0 0 5 :281-308.
  • 10季秀才,郑志强,张辉.SLAM问题中机器人定位误差分析与控制[J].自动化学报,2008,34(3):323-330. 被引量:35

共引文献223

同被引文献33

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部