期刊文献+

次线性非对称Duffing方程的不变环面

Invariant Tori of Sublinear Asymmetric Duffing Equations
原文传递
导出
摘要 利用Moser扭转定理,在一定的光滑性条件下,证明了次线性非对称Duffing方程x"+b(+x^(+))^((1/3))-b(x^(-))^((1/3))+φ(x)=p(t)无穷多不变环面的存在性,从而得到拉格朗日稳定性,其中扰动项φ(x)有界,而强迫项p(t)是周期函数. By using Moser’s twist theorem,under some smoothness conditions,we prove the existence of infinitely many invariant tori and so the Lagrange stability for the sublinear asymmetric Duffing equations x"+b(+x^(+))^((1/3))-b(x^(-))^((1/3))+φ(x)=p(t),where the perturbation termφ(x)is bounded,while the forced term p(t)is periodic in t.
作者 张新丽 朴大雄 Xin Li ZHANG;Da Xiong PIAO(School of Mathematics and Physics,Qingdao University of Science and Technology,Qingdao 266061,P.R.China;School of Mathematical Sciences,Ocean University of China,Qingdao 266100,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2021年第6期967-978,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11571327,11971059)。
关键词 不变环面 解的有界性 次线性非对称Duffing方程 扭转定理 invariant tori boundedness of solutions sublinear asymmetric Duffing equation twist theorem
  • 相关文献

参考文献4

二级参考文献27

  • 1尤建功.BOUNDEDNESS FOR SOLUTIONS OF SUPERLINEAR DUFFING EQUATIONS VIA THE TWIST THEOREM[J].Science China Mathematics,1992,35(4):399-412. 被引量:7
  • 2QIAN DINGBIAN(Department of Mathematics, Suzhou University, 215006, China.).MATHER SETS FOR SUBLINEAR DUFFING EQUATIONS[J].Chinese Annals of Mathematics,Series B,1994,15(4):421-434. 被引量:13
  • 3裴明亮.超线性Duffing方程的Mather集[J].中国科学(A辑),1993,23(1):21-30. 被引量:5
  • 4蒋美跃,裴明亮.扭转映射的Aubry-Mather理论及其应用[J].数学进展,1994,23(2):97-114. 被引量:12
  • 5Zhang M. Nonresonance conditions for asymptotically positively homogeneous differential systems: the Fucik spectrum and its generalization. J Differential Equations, 145, 332-366 (1998).
  • 6Ortega R. Asymmetric oscillators and twist mappings. J London Math Soc, 53, 325-342 (1996).
  • 7Alonso J M, Ortega R. Roots of unity and unbounded motions of an asymmetric oscillator. J.Differential Equations, 143, 201-220 (1998).
  • 8Liu B. Boundedness in asymmetric oscillations. J Mathematical Analysis and Applications, 231,355-373(1999).
  • 9Liu B. Boundedness in nonlinear oscillations at resonance. J Differential Equations, 153, 142-174 (1999).
  • 10Ortega R. Boundedness in a piecewise linear oscillator and a variant of the small twist theorem. Proc London Math Soc, 79, 381-413 (1999).

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部