期刊文献+

基于移动窗卡尔曼滤波算法的结构响应重构 被引量:5

Structural response reconstruction based on moving window Kalman filtering algorithm
下载PDF
导出
摘要 为了克服传统卡尔曼滤波(Kalman filter,KF)算法在重构结构未测点响应时,需要已知测量噪声方差和过程噪声方差以及需假定二者为恒值的问题,提出了一种基于移动窗卡尔曼滤波(moving-window Kalman filter,MWKF)算法的结构响应重构方法。该方法的特点在于:无需预先按经验设定测量和过程噪声方差值,利用移动窗技术,首先实时估计二者的数值,然后基于KF算法,利用有限测点的响应信息重构结构未安装传感器位置的响应。以一个平面单跨框架结构为例进行数值模拟和试验分析。分析结果表明:该方法能有效地实时估计测量噪声方差和过程噪声方差,未测点的重构动力响应时程与计算响应时程或者测量响应吻合良好。 Here,to overcome the problem of using traditional Kalman filtering(KF)algorithm needing known measurement noise variance and process noise variance and assuming they being constant when reconstructing a structure’s unmeasured point response,a structural response reconstruction method based on moving-window Kalman filtering(MWKF)algorithm was proposed.The feature of this method was not needing to set variances of measurement noise and process noise according to experience in advance.Firstly,the moving-window technique was used to estimate variances of measurement noise and process noise in real time.Then,based on KF algorithm,responses of structure at positions without sensors were reconstructed by using response information of limited measuring points.Finally,a plane single-span frame structure was taken as an example to do numerical simulation and test analysis.The analysis results showed that the proposed method can be used to effectively estimate measurement noise variance and process noise variance in real time;the reconstructed dynamic response time history of unmeasured points agrees well with the calculated response time history or the measured one.
作者 张笑华 吴志彪 吴圣斌 黄梅萍 ZHANG Xiaohua;WU Zhibiao;WU Shengbin;HUANG Meiping(College of Civil Engineering,Fuzhou University,Fuzhou 350108,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第21期90-96,105,共8页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51608126) 福建省自然科学基金项目(2016J05124)。
关键词 噪声方差未知 卡尔曼滤波(KF)算法 移动窗 有限测点 响应重构 unknown noise variance Kalman filtering(KF)algorithm moving window limited measuring points response reconstruction
  • 相关文献

参考文献5

二级参考文献58

  • 1丁勇,许国山,林琦,吴斌.基于时-频域信息的结构系统识别方法研究[J].土木工程学报,2012,45(S1):15-19. 被引量:1
  • 2钱锋,王建国,汪权,逄焕平.基于模态应变能分布的压电致动器/传感器位置优化遗传算法[J].振动与冲击,2013,32(11):161-166. 被引量:10
  • 3谢强,薛松涛.结构健康监测传感器优化布置的混合算法[J].同济大学学报(自然科学版),2006,34(6):726-731. 被引量:15
  • 4Bisht S S, Singh M P. Detecting sudden changes in stiffness using high-pass filters [ J ]. Structural Control & Health Monitoring,2012,19 (3) :319 - 331.
  • 5Chu S Y, Lo S C. Application of real-time adaptive identification technique on damage detection and structural health monitoring [ J ]. Structural Control and Health Monitoring,2009, 16(3): 154- 177.
  • 6Huang C S, Huang S L, Su W C, et al. Identification of time-variant modal parameters using Time-Varying Autoregressive with Exogenous Input and low-order polynomial function [ J ]. Computer-Aided Civil and Infrastructure Engineering,2009, 24 (7) : 470 - 491.
  • 7Loh C H, Huang S G. On-line physical parameter estimation and damage detection with adaptive Kalman filtering approach, Structural Health Monitoring 2007 : Quantification, Validation, And Implementation, Vols 1 and 2: Structural Health Monitoring (SHM) ,2007:2023 -2030.
  • 8Smyth A W, Masri S F, Kosmatopoulos E B, et al. Development of adaptive modeling techniques for non-linear hysteretic systems [ J ]. International Journal of Non-Linear Mechanics, 2007,37 ( 8 ) : 1435 - 1451.
  • 9Shi Z Y, Law S S, Xu X. Identification of linear time-varying MDOF dynamic systems from Excitation using Hilbert transform and EMD method [ J ]. Journal of Sound and Vibration, 2009,321 (3 - 5) : 572 - 589.
  • 10Lin J W, Betti R. On-line identification and damage detection in non-linear structural systems using a variable forgetting factor approach [ J ]. Earthquake Engineering and Structural Dynamics,2004, 33(4): 419-444.

共引文献39

同被引文献35

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部