期刊文献+

超稀薄燃烧对汽油发动机性能影响的试验研究 被引量:4

Experimental Research on the Effect of Ultra-lean Combustion on the Gasoline Engine Performance
下载PDF
导出
摘要 均质超稀薄燃烧技术作为实现45%+热效率的关键技术之一,缸内最高燃烧温度较当量比燃烧低,可有效降低爆燃倾向,在超高压缩比下提高点火角,同时提高比热比,进而提高热效率,随着过量空气系数的提高,燃烧温度降低,从而获得较低的NO_(x)排放。在此背景下研究汽油机超稀薄燃烧性能。在一款热力学单缸机上应用电晕点火系统、快速燃烧系统和超高压缩比技术等,研究汽油机超稀薄燃烧(过量空气系数>1.8)的燃烧、油耗和排放情况。试验验证发现,采用电晕点火高电压及较长持续时间可以获得过量空气系数2.2以上稳定燃烧,在2000 r/min及IMEP 10 MPa,过量空气系数2.25时,发动机的指示燃油消耗率为170.5 g/(kW·h),并获得较低的NO_(x)原始排放。 Homogeneous lean combustion is a key technology to achieve more than 45%thermal efficiency of the gasoline engine and knocking suppression due to the lower maximum combustion temperature than the stoichiometric combustion.Advanced ignition timing in the case of ultra-high compression ratio and specific heat ratio can also improve thermal efficiency.With the increase of excess air coefficient,the engine obtains a lower NO_(x) due to lower combustion temperature.Under this background,this paper studies the ultra-lean combustion performance of the gasoline engine.In this paper,we study the combustion,fuel consumption and emission of ultra lean combustion(φa>1.8)at a thermodynamic single cylinder engine which applied corona ignition system,fast combustion system and ultra high CR technology.And we have achieved the best ISFC,170.5g/(kWh),the engine indicated thermal efficiency about 49.5%,with low NO_(x) emission at 2000 r/min,IMEP10 MPa and lambda 2.25.
作者 王志望 张华 胡轲 李连豹 韦虹 李双清 王瑞平 WANG Zhiwang;ZHANG Hua;HU Ke;LI Lianbao;WEI Hong;LI Shuangqing;WANG Ruiping(Ningbo Geely Royal Engine Components Co.,Ltd.,Ningbo,Zhejiang,315336,China;Zhejiang Geely Powertrain Co.,Ltd.)
出处 《小型内燃机与车辆技术》 2021年第5期9-12,共4页 Small Internal Combustion Engine and Vehicle Technique
关键词 汽油机 均质稀薄燃烧 高效点火 热效率 排放 Gasoline engine Lean combustion High efficiency ignition Thermal efficiency Emission
  • 相关文献

参考文献2

二级参考文献19

  • 1周少任,张煜盛.内燃机脉冲电晕放电点火研究现状与发展方向[J].车用发动机,2006(5):7-11. 被引量:4
  • 2Liu J B,Ronney P D, Gundersen M A. Premixed flame ignition by pulsed corona discharges[C]. San Diego:[s. n. ],2001.
  • 3Jian Bang Liu,Fei Wang,Lee L C. Effect of Discharge Energy and Cavity Geometry on Flame Ignition by Transient Plasma [C]. AIAA Paper A04-10652 ,2004.
  • 4Liu J B,Wang F, Li G. Transient plasma ignition[J].IEEE Transactions on Plasma Science, 2005,33 : 326-327.
  • 5Bellenoue M, Labuda S, Ruttun B, et al. Spark Plug and Corona Abilities to Ignite Lean Methane/Air Mixtures[OL]. www. galeit, ealteeh, edu/-jeshep/ieders/ed-rom/EXTABS/93_20TH. PDF.
  • 6Jianbang Liu,Fei Wang,Lee L C,et al. Effect of Fuel Type on Flame Ignition by Transient Plasma Discharges[C]. AIAA Paper A04-10610,2004.
  • 7Wang F, Liu J B, Sinibaldi J, et al. Transient plasma ignition of quiescent and flowing air/fuel mixtures[J]. IEEE Transactions on Plasma Science, 2005,33:844-849.
  • 8Liu J B, Theiss N,Jiang C, et al. Minimum Ignition Energies and Burning Rates of Flames Ignited by Transient Plasma Discharges[OL]. www. usc. edu/dept/ee/Gunders en/ignition/Liu_WSS_2003. PDF.
  • 9Paul DNaturalcations/R. Corona Discharge Ignition for Stationary Gas Engines[OL]. www. netl. doe. gov/publi-30romney. proceedings/03 /recipr ocating/11-pdf.
  • 10Paul D R. Technical Progress Report[OL]. www. osti. gov/ bridge/se rvlets/ purl/822386-Fy7pT7/native/822386, pdf.

共引文献11

同被引文献28

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部