摘要
为了实现高集成度和高稳定性的三维光学芯片,必须对三维空间波导的耦合特性进行系统研究。本文主要研究三维集成光学芯片中波导之间的耦合问题。通过全波仿真的方法数值模拟波导阵列在不同架构下的电场分布,并分析平行波导间和交叉波导间的耦合效率与波导间距、周围介质折射率、工作波长和夹角之间的关系。在平行波导中,当两个SiO_(2)基片上波导之间的中心间距为0.76μm和耦合长度为72.5μm时,垂直方向上波导间的耦合效率达到0.997。在交叉波导中,波导之间的耦合效率对波导夹角很敏感,当夹角大于10°时,波导间不发生耦合,可以通过调整波导间的夹角来控制波导之间的耦合。
In order to realize a high-integration and high-stability three-dimensional optical chip,it is necessary to systematically study the coupling characteristics of three-dimensional spatial waveguides.This paper mainly studies the coupling between waveguides in three-dimensional integrated optical chips.The electromagnetic field distribution of the waveguide array under different architectures is simulated by full-wave simulation.The coupling efficiency between parallel waveguides and crossed waveguides is analyzed,which is related to and the waveguide spacing,the refractive index of the surrounding medium,the working wavelength and the angle.In parallel waveguides,when the center-tocenter spacing between the waveguides on two SiO;substrates is 0.76μm and the coupling length is 72.5μm,the coupling efficiency between the waveguides in the vertical direction reaches 0.997.In crossed waveguides,the coupling efficiency between the waveguides is very sensitive to the angle between the waveguides.When the angle is greater than 10°,no coupling occurs between the waveguides,so the coupling between the waveguides can be controlled by adjusting the angle between the waveguides.
作者
庄瑞
洪晶晶
刘爱萍
周兴平
王琴
Zhuang Rui;Hong Jingjing;Liu Aiping;Zhou Xingping;Wang Qin(Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210003,China;Key Lab of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210003,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2021年第19期344-349,共6页
Laser & Optoelectronics Progress
基金
中国博士后基金(SBH190004)
国家重点研发计划(2018YFA0306400,2017YFA0304100)
江苏省自然科学基金前沿技术项目(BK20192001)。
关键词
光学器件
集成波导
光学芯片
耦合效率
波导模式
optical devices
integrated waveguide
optical chip
coupling efficiency
waveguide mode