期刊文献+

基于透镜-反射镜组合的石英音叉增强型光声光谱系统 被引量:8

Quartz-Enhanced Photoacoustic Spectroscopy System Based on Lens-Reflector Combination
原文传递
导出
摘要 为了提高石英音叉增强型光声光谱(QEPAS)系统的探测灵敏度,本文提出了一种基于透镜-反射镜组合的离轴石英音叉增强光声光谱(LR-QEPAS)系统。该系统采用使激光束在共振管内往返四次的透镜-反射镜组合结构和谐波探测技术,在室温和一个大气压下对1392.58 nm处的水汽吸收线进行测量,优化了系统的调制深度,验证了离轴LR-QEPAS系统的性能随着激光在共振管内往返次数的增加而提高,并且在同样的实验条件下引入离轴QEPAS和双通QEPAS系统进行比较。最后利用Allan方差对系统的稳定性和探测灵敏度进行分析,得到了离轴LR-QEPAS系统在64 s积分时间内的最小检测极限为7.54×10^(-8),归一化噪声等效吸收(NNEA)系数为3.46×10^(-9) cm^(-1)·W·Hz^(-1/2)。实验结果表明,透镜-反射镜组合结构可以显著提高QEPAS系统的性能。 Objective Quartz-enhanced photoacoustic spectroscopy(QEPAS),as a relatively mature trace gas detection technology,has promising application prospects.QEPAS has several advantages such as high-quality factor,narrow response bandwidth,strong anti-interference,the small size of detection module,and low cost.However,because the output power of the laser excitation source limits the QEPAS system’s performance,passing the laser beam through the acoustic detection module multiple times can effectively improve the optical power of the gas absorption.Conventional double-pass QEPAS systems,in which the laser beam passes through the acoustic detection module twice,are not visible for photoacoustic signals enhancement.This paper proposes an off-beam QEPAS system based on a lens-reflector combination(LR-QEPAS)in which the laser beam passes through the acoustic detection module four times to achieve a stronger photoacoustic signal.The lens-reflector combination structure comprising a convex lens,concave reflector,and plane reflector is applied to improve the detection limit of the QEPAS system.We hope that the results of this study can be applied to different types of QEPAS systems,allowing us to further improve the detection limit of trace gases.Methods A fiber-coupled near-infrared distributed feedback laser(NLK1E5EAAA,NEL)was used as a laser source;the current and temperature of the laser were controlled by a commercial diode laser controller(ILX Lightwave LDC-3724C).The current of the laser controller was tuned to achieve coarse and fine-tuning of the laser wavelength,respectively.The second harmonic detection was used to enhance the sensitivity of the off-beam LR-QEPAS.A sine wave at half of the quartz tuning fork(QTF)resonant frequency provided by the function generator was used to modulate the laser source and input the laser controller.The reference sine wave at half of the QTF resonant frequency was an input into lock-in amplifier.The piezoelectric signal generated by the QTF was amplified by a low noise transimpedance amplifier and converted into a voltage signal.A lock-in amplifier(Stanford Research SR850)at the QTF resonant frequency demodulated the amplified signal.The acoustic detection module of the off-beam LR-QEPAS comprises a plane reflector,concave reflector,convex lens,and microresonator.An infrared sensor plate(HCP-IR-1201)and laser beam analyzer S-WCD-QD-1550(Dataray Inc.)were used to fine-tune the optical path.Results and Discussions The photoacoustic signal of the off-beam LR-QEPAS system increases nonlinearly with the increases of times that the laser beam passes through the miroresonator(Fig.4)for the laser beam is scattered in the air.The modulation depth of the off-beam LR-QEPAS is compared with the optimized off-beam QEPAS,P-QEPAS,and C-QEPAS systems,and the results show that the systems have the optimal modulation depth of 0.34cm^(-1)(Fig.5).The measurement of the second harmonic signal shows that the off-beam LR-QEPAS system has the highest signal amplitude because the lens-reflector combination effectively increases the power that the laser passes through the miroresonator.The normalized noise equivalent absorption coefficient is 3.46×10^(-9) cm^(-1)·W·Hz-1/2(Fig.6).The Allan variance analysis results show that the lowest detection limit of the off-beam LR-QEPAS system is 7.54×10^(-8) with an integration time of 64s(Fig.7).The application of the lens-reflector combined structure greatly improves the detection limit.Conclusions The off-beam LR-QEPAS system based on a lens-reflector combination was proposed.The lens-reflector combination structures combined with the second harmonic detection technique were used to measure the water vapor with volume fraction of 1.2%at 1392.58nm for evaluating the system performance.In the experiment,the off-beam QEPAS and two dual-pass QEPAS systems were used as a reference to determine the optimal modulation depth of the system and verify that the detection sensitivity of the system increases as the number of times the laser beam passes through the miroresonator.The Allan variance analysis shows that the minimum detection limit of the off-beam LR-QEPAS system is 7.54×10^(-8) with an integration time of 64s,and the NNEA coefficient is3.46×10^(-9)cm^(-1)·W·Hz-1/2.The results show that the performance of the off-beam LR-QEPAS system is better than that of the off-beam QEPAS,P-QEPAS,and C-QEPAS,and it meets the accuracy requirements in atmospheric trace gases detection.The lens-reflector combined structure significantly improves the sensitivity of the system and can be used in combination with different types of microresonator structures to achieve higher detection sensitivity.The next step will focus on realizing the multipass of the laser beam in the miroresonator,which can be expected to achieve subppbv and applied to the other trace gas detection.
作者 刘金鹏 孙柳雅 牛明生 马丽丽 张景虎 Liu Jinpeng;Sun Liuya;Niu Mingsheng;Ma Lili;Zhang Jinghu(Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Laser Research Institute,School of Physical Engineering,Qufu Normal University,Qufu,Shandong 273165,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2021年第20期153-160,共8页 Chinese Journal of Lasers
关键词 光谱学 石英增强型光声光谱 透镜-反射镜组合 水汽 spectroscopy quartz-enhanced photoacoustic spectroscopy lens-reflector combination water vapor
  • 相关文献

参考文献6

二级参考文献51

  • 1苏庆德,王勤,杨跃涛,赵贵文.叶绿素a的光声光谱及弛豫过程[J].高等学校化学学报,1996,17(3):373-376. 被引量:3
  • 2廖开俊,刘志飞.虚拟仪器技术综述[J].国外电子测量技术,2006,25(2):6-8. 被引量:31
  • 3王习东,黄佐华,唐志列,何振江.实用光声光谱实验系统[J].光学仪器,2006,28(5):52-56. 被引量:6
  • 4A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl et al.. Quartz-enhanced photoacoustic spectroscopy[J].Opt. Lett., 2002, 27(21): 1902-1904.
  • 5A. A. Kosterev, F. K. Tittel. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser[J].Appl. Opt., 2004, 43(33): 6213-6217.
  • 6R. Lewicki, G. Wysocki, A. A. Kosterev et al.. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy[J].Appl. Phys. B, 2007, 87(1): 157-162.
  • 7A. A. Kosterev, T. S. Mosely, F. K. Tittel. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN[J].Appl. Phys. B, 2006, 85(2): 295-300.
  • 8S. Schilt, A. A. Kosterev, F. K. Tittel. Performance evaluation of a near infrared QEPAS based ethylene sensor[J].Appl. Phys. B, 2009, 95(4): 813-824.
  • 9K. Liu, J. Li, L. Wang et al.. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy[J].Appl. Phys. B, 2009, 94(3): 527-533.
  • 10A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel et al.. QEPAS methane sensor performance for humidified gases[J].Appl. Phys. B, 2008, 92(1): 103-109.

共引文献64

同被引文献37

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部