期刊文献+

底部反射增强的GaAs纳米线径向p-i-n结阵列太阳能电池 被引量:3

Solar Cells Based on Bottom-Reflectivity-Enhanced GaAs Radial p-i-n Junction Nanowire Array
原文传递
导出
摘要 提出了一种基于底部反射增强的GaAs纳米线径向p-i-n结阵列的太阳能电池,利用有限差分时域法和有限元方法对其光谱吸收和光伏性能进行了研究。结果表明,将聚合物和衬底之间的SiO2替换为低折射率的MgF2介质层,不仅显著降低了衬底的吸收损耗,还显著提高了纳米线阵列在整个波长范围内对光的吸收率。此外,通过优化i区厚度和纳米线长度,可将太阳能电池的光电转换效率提升至13.9%。该研究为实现低成本、高性能的纳米太阳能电池提供了一条可行途径。 A solar cell based on bottom-reflectivity-enhanced GaAs radial p-i-n junction nanowire array is proposed, and its spectral absorption and photovoltaic performance are studied by finite-different time-domain method and finite element method. The results show that replacing SiO;between the polymer and the substrate with MgF;dielectric layer with low refractive index not only significantly reduces the absorption loss of the substrate, but also significantly improves the optical absorptance of the nanowire array in the whole wavelength range. Moreover, the photoelectric conversion efficiency of the solar cell can be improved to 13.9% by optimizing the thickness of i region and the length of nanowire. This study provides a feasible way to realize low-cost and high-performance nano solar cells.
作者 刘浩然 颜鑫 袁学光 张阳安 张霞 Liu Haoran;Yan Xin;Yuan Xueguang;Zhang Yangan;Zhang Xia(State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2021年第20期101-106,共6页 Acta Optica Sinica
基金 国家自然科学基金(61774021,61935003) 国家重点研发计划项目(2018YFB2200104) 北京市科技计划项目(Z191100004819012) 信息光子学与光通信国家重点实验室(北京邮电大学)自主研究课题(IPOC2019ZT07,IPOC2020ZZ01)。
关键词 集成光学 纳米线 太阳能电池 底部反射 转换效率 integrated optics nanowire solar cell bottom reflectivity conversion efficiency
  • 相关文献

参考文献4

二级参考文献22

  • 1M A Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion [M]. Berlin: Springer, 2005.
  • 2M Bosl, C Pelosi. The potential of III-V semiconductors as terrestrial photovoltaic devices [J]. Progress in Photovoltaics~ Research and Applications, 2007, 15(1): 51--68.
  • 3R R King, D C Law, K M Edmondson, et al.. 40~ efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells [J]. Appl Phys Lett, 2007, 90(18): 183516.
  • 4E Garnett, P Yang. Light trapping in silicon nanowire solar cells [J]. Nano Letters, 2010, 10(3): 1082-1087.
  • 5L Hu, G Chen. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications[J]. Nano Letters, 2007, 7 (11): 3249-3252.
  • 6J Kupec, B Witzigmann. Dispersion, wave propagation and efficiency analysis of nanowire solar cells [J].Opt Express, 2009, 17 (12): 10399-10410.
  • 7H J Joyce, Q Gao, J Wong-Leung, et al.. Tailoring GaAs, InAs, and InGaAs nanowires for optoelectronic device applications [J]. 1EEE J Selected Topics in Quantum Electronics, 2011, 17(4) : 766--778.
  • 8Y Kim, H J Joyee, Q Gao, et al.. Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires[J]. Nane Letters, 2006, 6(4): 599--604.
  • 9M Moewe, L C Chuang, S Crankshaw, et al.. Atomically sharp catalyst free wurtzite GaAs/A1GaAs nanoneedles grown on silicon [J]. Appl Phys Lett, 2008, 93(2): 023116.
  • 10M N Polyanskiy. Refractive Index Database [OL]. http://refractiveindex, info. [2014-10 31].

共引文献14

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部