期刊文献+

一种自适应GNSS弱信号载噪比估计方法 被引量:4

An adaptive carrier-to-noise ratio estimation method for GNSS weak signal
下载PDF
导出
摘要 全球导航卫星系统(GNSS)信号的载噪比(CNR)是衡量接收机工作性能的一个重要参数。为了准确得到载噪比估计值,推导并分析了2种常用的GNSS信号载噪比估计方法(方差求和法(VSM)、窄带宽带功率比值法(PRM)),并同时提出一种基于渐消因子容积卡尔曼滤波的自适应载噪比估计方法,比较了3种方法在通常的信号环境下和弱信号环境下的载噪比估计能力。结果显示:在信号较弱环境或信号受到遮挡产生突变等情况时,VSM方法与PRM方法均会产生较大的误差,而自适应载噪比估计方法能准确估计出信号的载噪比。 The Carrier-to-Noise Ratio(CNR)of Global Navigation Satellite System(GNSS)signals is an important parameter to describe GNSS receiver’s performance.In this paper,we derive and analyze two commonly used GNSS signal CNR estimation methods:Variance Summing Method(VSM)and Power Ratio Method(PRM).Meanwhile,we propose an adaptive CNR estimation method which is based on fading factor cubature Kalman filter.We compare the three methods to assess the CNR estimation ability in normal and weak signal environment.The results show that,when signal suddenly changes or signal is weak,the VSM and PRM will produce large estimation errors,while the adaptive CNR estimation methods can still accurately estimate the CNR of signal.
作者 孙文杰 王兆瑞 金声震 艾国祥 SUN Wenjie;WANG Zhaorui;JIN Shengzhen;AI Guoxiang(National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第10期2068-2074,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(U1931125,11603041) 国家重点研发计划(2016YFB0501900)。
关键词 全球导航卫星系统(GNSS)信号 GNSS接收机 载噪比(CNR)估计 容积卡尔曼滤波 渐消因子 Global Navigation Satellite System(GNSS)signal GNSS receiver Carrier-to-Noise Ratio(CNR)estimation cubature Kalman filter fade factor
  • 相关文献

参考文献7

二级参考文献37

  • 1黄劲松,刘峻宁,刘成宝,田辉.GPS信号载噪比研究[J].武汉大学学报(信息科学版),2007,32(5):427-430. 被引量:16
  • 2Dennis Roddy. Satellite Communications [M]. 3rd Ed. New York, USA: McGraw-Hill, 2001 : 321-331.
  • 3J B Y Tsui. Fundamentals of Global Positioning System Receivers A Software Approach [M]. 2nd Ed. USA: John Wiley, 2005, 193: 237-238.
  • 4Mohammad S Sharawi, Dennis M. Akos, Daniel N Aloi. GPS C/N0 estimation in the presence of interference and limited quantization levels [J]. IEEE transactions on aerospace and electronic systems (S0018-9251), 2007, 43(1 ): 227-238.
  • 5Psiaki M L, Akos D M, Thor J. A comparison of direct RF sampling and down-convert & sampling GNSS receiver architectures [C]//ION GPS 2003 Proceedings, Portland, OR, USA: Institute of Navigation, 2003, (9): 1941-1952.
  • 6Psiaki M L. Block acquisition of weak GPS signals in a software receiver [C]//ION GPS 2001 Proceedings, Salt Lake City, UT, USA: Institute of Navigation, 2001, (9): 2838-2850.
  • 7Van Direndonck A J. GPS Receivers [C]//B W Parkinson, J J Spilker, P Axelrad, P Enge (Eds.). Global Positioning System: Theory and Applications, vol.1. USA: American Institute for Aeronautics and Astronautics, 1996.
  • 8Sayre M M. Development of a block processing carrier to noise ratio estimator for the Global Positioning System [D]. USA: Ohio State University, 2003.
  • 9郑君里,应启衍,杨为理.信号与系统[M].2^nd Ed.北京:高等教育出版社,2004:341-342.
  • 10SCHMID A, NEUBAUER A. Carrier to noise power estimation for enhanced sensitivity galileo/GPS receivers. Vehicular Technology Conference, Stockholm Sweden, 2005,4: 2629- 2633.

共引文献163

同被引文献30

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部