期刊文献+

低阶煤对六价铬的高效吸附及还原脱毒

Efficient Adsorption and Reduction of Hexavalent Chromium by Low Rank Coals
下载PDF
导出
摘要 采用低阶煤(Low Rank Coals,LRCs)作为吸附剂去除水溶液中的六价铬(Cr(VI))。通过实验探究了初始溶液浓度、吸附剂用量、pH值及离子强度等影响因素对LRCs吸附Cr(VI)性能影响。结果表明,LRCs对Cr(VI)的最大单位吸附容量为43.066 mg/g。Cr(VI)的去除效率(Removal Efficiency,RE)随着LRCs投加量的增加而增加。相反,RE随pH值的增加而降低,且在pH值>2时从99%急剧下降至18%。此外,Cr(VI)在LRCs上的单位吸附量(the unit adsorption capacity,q_(e))随Cl^(-)浓度的增加而显著降低。吸附过程符合Freundlich等温模型和准二级动力学模型。结合实验结果和表征分析,认为LRCs吸附Cr(VI)的机理为:静电吸引、离子交换及还原作用。 Low Rank Coals(LRCs)were used as adsorbents to remove hexavalent chromium(Cr(VI))from aqueous solution.The effects of the initial solution concentration,the amount of adsorbent,pH and ionic strength on the adsorption of Cr(VI)by LRCs were studied.The results showed that the maximum unit adsorption capacity of LRCs for Cr(VI)was 43.066 mg/g.The removal efficiency(Removal Efficiency,RE)of Cr(VI)increases with the increase of the amount of LRCs added.In contrast,RE decreases with increasing pH and drops sharply from 99%to 18%at pH>2.In addition,the unit adsorption capacity(q_(e))of Cr(VI)on LRCs decreased significantly with increasing Cl^(-)concentration.The adsorption process conforms to freundlich isothermal model and pseudo-second-order kinetic model.Combining experimental results and characterization analysis,it was concluded that the mechanism of adsorption of Cr(VI)by LRCs was:electrostatic attraction,ion exchange,and reduction.
作者 邹星云 王雅琦 方宇慧 张璇 盖玉洁 Zou Xingyun;Wang Yaqi;Fang Yuhui;Zhang Xuan;Gai Yujie(Qingdao Keda Mining Technology Development Co.,Ltd.,Qingdao 266590,China;College of Safety and Environmental Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《山东化工》 CAS 2021年第21期219-224,共6页 Shandong Chemical Industry
基金 国家自然科学基金(51904174) 青岛西海岸新区科技项目(科技惠民专项)(2019-48)。
关键词 六价铬 低阶煤 吸附 还原 hexavalent chromium(Cr(VI)) Low Rank Coals(LRCs) adsorption reduction
  • 相关文献

参考文献5

二级参考文献101

  • 1李强,陈明,崔富昌,程剑锋,张玉臻.生物吸附剂ZL5-2对Cr(Ⅵ)的吸附机理[J].环境科学,2006,27(2):343-346. 被引量:24
  • 2裘凯栋,黎维彬.水溶液中六价铬在碳纳米管上的吸附[J].物理化学学报,2006,22(12):1542-1546. 被引量:31
  • 3Altundogan H S. Cr( Ⅵ)removal from aqueous solution by iron(Ⅲ) hydroxide-loaded sugar beet pulp[J]. Process Biochemistry, 2005,40(3-4) : 1443-1452.
  • 4Singh M. Heavy metal pollution in freshly deposited sediments of the Yamuna River (the Ganges River tributary) : a case study from Delhi and Agra urban centres, India[J]. En Ⅵronmental Geology, 2001,40(6) : 664-671.
  • 5Namasivayam C, Sureshkumar M V. Removal of chromium (Ⅵ) from water and wastewater using surfactant modified coconut coir pith as a biosorbent[J]. Bioresource Technology, 2008,99( 7 ) : 2218-2225.
  • 6Meunier N, Drogui P, Montane C, et al. Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate[J]. Journal of Hazardous Materials, 2006,137( 1 ) : 581-590.
  • 7Kozlowski C, Walkowiak W. Removal of chromium (Ⅵ) from aqueous solutions by polymer inclusion membranes[J]. Water Research, 2002,36(19) : 48704876.
  • 8Ruotolo L A M, Santos-Junior D S, Gubulin J C. Electrochemical treatment of effluents containing Cr(Ⅵ): Influence of pH and current on the kinetics[J]. Water Research, 2006, 40(8) : 1555-1560.
  • 9Garg U K, Kaur M P, Garg V K, et al. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass [J]. Journal of Hazardous Materials, 2007, 140 (1-2) :60-68.
  • 10Santiago I, Worland V, Cazares-Rivera E, et al. In Adsorption of Hexavalent Chromium onto Tailored Zeolites [M]. Mosby Year Book Europe LTD,1993:699-699.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部