期刊文献+

新型BIPVT超低能耗建筑节能特性研究 被引量:2

Study on Energy-saving Characteristics of Novel BIPVT Ultra-low Energy Building
原文传递
导出
摘要 将微热管阵列应用于建筑一体化光伏光热(BIPVT)组件,设计了多能互补耦合热泵供能系统,实现了太阳能与空气能高效互补利用,并搭建了新型BIPVT超低能耗建筑。同时建立了BIPVT建筑的仿真模型,并将其与BIPV幕墙建筑和普通参考建筑的产能与用能进行模拟与对比分析。结果表明,新型BIPVT建筑全年累计空调负荷为3033 k W·h,相对于BIPV幕墙,建筑负荷降低了32.9%。相对于参考建筑,负荷增加了8.6%。新型BIPVT建筑能耗综合值为113.5 k W·h/(m^(2)·a),相对于BIPV幕墙和普通墙体围护结构,新型BIPVT建筑综合节能率分别为38.5%和62.2%。本研究为超低能耗建筑的应用提供了新的技术方法与理论依据。 The micro heat pipe array was applied to building integrated photovoltaic-thermal(BIPVT)module.A novel BIPVT ultra-low energy building was proposed and constructed,which consists of multi-energy complementary energy supply system based on the efficient complementary utilization of solar energy and air energy.The building energy consumption model is established and the BIPVT building energy consumption was compared with the BIPV and reference building,and the difference of energy consumption and the energy generated by are analyzed.According to the results,the annual loads of BIPVT building is 3033 k W·h,which is 32.9% lower than BIPV building.Moreover,the building energy consumption of BIPVT building is 113.5 kW·h/(m^(2)·a).Compared with BIPV and ordinary wall,building energy saving rate of BIPVT building is 38.5% and 62.2%,respectively.
作者 任海波 全贞花 王林成 王兆萌 赵耀华 REN Haibo;QUAN Zhenhua;WANG Lincheng;WANG Zhaomeng;ZHAO Yaohua(Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology,Beijing University of Technology,Beijing 100124,China)
出处 《建筑科学》 CSCD 北大核心 2021年第10期103-109,137,共8页 Building Science
基金 国家自然科学基金项目“BIPV/T-太阳能热泵耦合供能系统优化设计方法”(51778010)。
关键词 光伏光热建筑一体化(BIPVT) 仿真模型 能耗分析 超低能耗建筑 多能互补 building integrated photovoltaic photothermal(BIPVT) simulation model energy consumption analysis ultra-low energy building multi-energy supplement
  • 相关文献

参考文献3

二级参考文献28

  • 1胡晨明 R.M.怀特.李采华译.太阳电池[M].北京:北京大学出版社,1990.57.
  • 2B.J. Huang et al. , Solar photovoltaic/thermal co-generation collector [ C ], Proceedings of the ISES 1999 Solar World Congress, Jerusalem, Israel, 1999.
  • 3T. Bergene and O. Lovik, Model calculations on a flatplate solar heat collector with integrated solar cells, Solar Energy [J], Vol. 55, No. 6, 453-462, 1995.
  • 4京特·莱纳 汉斯·卡尔(德) 余世杰 何慧若译.太阳能的光伏利用[M].合肥:合肥工业大学能源研究所,1991.116-130.
  • 5弗兰克P英克鲁佩勒 戴维P戴维特 葛新石 王义方 郭宽良.传热的基本原理[M].安徽教育出版社,1985..
  • 6He Wei.Study of photo-thermal and photovoltaic application of solar energy on architecture[D].University of Science and Technology of China,2002.
  • 7Ji Jie,He Wei,Lam H N.The annual analysis of the power output and heat gain of a PV-Wall with different orientations in HongKong[J].Solar Energy Materials & Solar Cell,2002,71:435-448.
  • 8Brinkworth B J,Cross B M,Marshal R H,et al.Thermal regulation of photovoltaic cladding[J].Solar Energy,1997,(61):169-178.
  • 9Ji Jie,Chow Tin-Tai,He Wei.Dynamic performance of hybrid photovoltaic/thermal collector wall in HongKong[J].Building and Environment,2003,38(11):1327-1334.
  • 10Trpanagnostopoulos Y,et al.Hybrid photovoltaic/thermal solar systems[J].Solar Energy,2002,72(3):217-234.

共引文献95

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部